首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metallurgical and Materials Transactions B - To mitigate the chemical reaction between mold fluxes and high-Al steel, CaO-Al2O3-based mold fluxes were proposed to replace the conventional...  相似文献   

2.
An investigation was carried out to study the effect of MnO on crystallization, melting, and heat transfer of lime-alumina-based mold flux used for high Al-TRIP steel casting, through applying the infrared emitter technique (IET) and the double hot thermocouple technique (DHTT). The results of IET tests showed that MnO could improve the general heat transfer rate through promoting the melting and inhibiting the crystallization of mold flux; meanwhile the radiative heat flux was being attenuated. DHTT experiments indicated that the crystallization fraction, melting temperature of mold flux decreased with the addition of MnO. The results of this study can further elucidate the properties of the CaO-Al2O3 slag system and reinforce the basis for the application of lime-alumina system mold fluxes for casting high Al steels.  相似文献   

3.
Metallurgical and Materials Transactions B - To control heat transfer between the solidifying shell and the water-cooled mold during continuous casting, the transition metal oxides, ZrO2, Y2O3, and...  相似文献   

4.
Metallurgical and Materials Transactions B - Wetting of steel by mold fluxes affects the surface quality of steel products. Reaction between [Al] and mold fluxes in the continuous casting of...  相似文献   

5.
6.
Crystallization behaviors of the newly developed lime-alumina-based mold fluxes for high-aluminum transformation induced plasticity (TRIP) steels casting were experimentally studied, and compared with those of lime-silica-based mold fluxes. The effects of mold flux crystallization characteristics on heat transfer and lubrication performance in casting high-Al TRIP steels were also evaluated. The results show that the crystallization temperatures of lime-alumina-based mold fluxes are much lower than those of lime-silica-based mold fluxes. Increasing B2O3 addition suppresses the crystallization of lime-alumina-based mold fluxes, while Na2O exhibits an opposite effect. In continuous cooling of lime-alumina-based mold fluxes with high B2O3 contents and a CaO/Al2O3 ratio of 3.3, faceted cuspidine precipitates first, followed by needle-like CaO·B2O3 or 9CaO·3B2O3·CaF2. In lime-alumina-based mold flux with low B2O3 content (5.4 mass pct) and a CaO/Al2O3 ratio of 1.2, the formation of fine CaF2 takes place first, followed by blocky interconnected CaO·2Al2O3 as the dominant crystalline phase, and rod-like 2CaO·B2O3 precipitates at lower temperature during continuous cooling of the mold flux. In B2O3-free mold flux, blocky interconnected 3CaO·Al2O3 precipitates after CaF2 and 3CaO·2SiO2 formation, and takes up almost the whole crystalline fraction. The casting trials show that the mold heat transfer rate significantly decreases near the meniscus during the continuous casting using lime-alumina-mold fluxes with higher crystallinity, which brings a great reduction of surface depressions on cast slabs. However, excessive crystallinity of mold flux causes poor lubrication between mold and solidifying steel shell, which induces various defects such as drag marks on cast slab. Among the studied mold fluxes, lime-alumina-based mold fluxes with higher B2O3 contents and a CaO/Al2O3 ratio of 3.3 show comparatively improved performance.  相似文献   

7.
The effect of MgO on crystallization and heat transfer of fluoride-free mold fluxes was studied using single/double-hot thermocouple technique (SHTT/DHTT) and infrared emitter technique (IET), respectively. SHTT experiments demonstrated that the increase of MgO concentration promoted the crystallization tendency of mold fluxes. XRD analysis showed that the dominant phases changed from CaSiO3 to CaSiO3/Ca2MgSi2O7/Ca11Si4B2O22, and to Ca2MgSi2O7 as the MgO content was increased. The heat flux across mold flux disks was reduced from 671 to 615 kW/m2 in IET experiments when MgO concentration was increased from 0.9 to 4.9 mass pct.  相似文献   

8.
An investigation was carried out to study the effects of basicity (CaO/Si2O) and B2O3 on the crystallization and heat transfer behaviors of low fluorine mold flux for casting medium carbon steels. The double hot thermocouple technique (DHTT) was employed to study the crystallization behavior of mold flux with a different basicity and B2O3 content, under the simulated thermal gradient as in a real caster. The infrared emitter technique (IET) was also applied for the study of heat transfer behavior of the above mold fluxes. By combining the results of IET and DHTT, this article indicated that the increase of basicity would decrease the general heat transfer rate of mold flux, as it tends to promote crystallization of mold flux apparently, while B2O3 has the opposite function. The combined effects of basicity and B2O3 could be used to adjust the general crystallization and heat transfer properties of low fluorine mold flux for casting medium carbon steels, which would provide an instructive way for the design of Fluorine free mold flux for casting medium carbon steels.  相似文献   

9.
An investigation has been conducted to study the effect of Na2O and B2O3 on the crystallization behavior of low fluorine (F) mold powders for casting medium carbon (MC) steels in this article. The results of this study indicated that B2O3 tends to lower the crystallization temperature and increase crystallization incubation time of the low F powders; however, Na2O plays an opposite role compared with that of B2O3. The crystalline phase of Ca11Si4B2O22 was formed in Sample D2 [F = 3 pct, Na2O = 10 pct, B2O3 = 8 pct (in wt pct)], which exhibited the most similar crystallization behavior to that of cuspidine, such that Sample D2 showed closest crystallization kinetics to that of a conventional high-F mold slag for casting MC steels. The precipitated crystalline phases for all the samples have been analyzed and discussed in the article.  相似文献   

10.
Metallurgical and Materials Transactions B - To moderate the erosion in a slag-line zone and extend the service life of a submerged entry nozzle during continuous casting of high-Mn and high-Al...  相似文献   

11.
The effects of basicity (CaO/SiO2), B2O3, and Li2O addition on the crystallization behaviors of lime-silica-based mold fluxes have been investigated by non-isothermal differential scanning calorimetry (DSC), field emission scanning electron microscopy, X-ray diffraction (XRD), and single hot thermocouple technique. It was found that the crystallization temperature of cuspidine increased with increasing the basicity of mold fluxes. The crystallization of wollastonite was suppressed with increasing the mold flux basicity due to the enhancement of cuspidine crystallization. The addition of B2O3 suppresses the crystallization of mold flux. The crystallization temperature of mold flux decreases with Li2O addition. The size of cuspidine increases, while the number of cuspidine decreases with increasing mold flux basicity. The morphology of cuspidine in mold fluxes with lower basicity is largely dendritic. The dendritic cuspidine in mold fluxes is composed of many fine cuspidine crystals. On the contrary, in mold fluxes with higher basicity, the cuspidine crystals are larger in size with mainly faceted morphology. The crystalline phase evolution was also calculated using a thermodynamic database, and compared with the experimental results determined by DSC and XRD. The results of thermodynamic calculation of crystalline phase formation are in accordance with the results determined by DSC and XRD.  相似文献   

12.
The effect of B2O3 on the viscosity and structure in the calcium-aluminate melt flux system containing Na2O was studied. An increase in the B2O3 content at fixed CaO/Al2O3 ratio lowered the viscosity. Higher CaO/Al2O3 ratio at fixed B2O3 content also decreased the viscosity. The alumino-borate structures were confirmed through Fourier transformed infrared (FTIR) and Raman spectroscopy and consisted of [AlO4]-tetrahedral structural units, [BO3]-triangular structural units, and [BO4]-tetrahedral structural units, which could be correlated to the viscosity. At fixed CaO/Al2O3 ratio, B2O3 additions decreased the [AlO4]-tetrahedral structural units and transformed the 3-D network structures such as pentaborate and tetraborate into 2-D network structures of boroxol and boroxyl rings by breaking the bridged oxygen atoms (O0) to produce non-bridged oxygen atoms (O?) leading to a decrease in the molten flux viscosity. At fixed B2O3 contents and higher CaO/Al2O3 ratio, 3-D complex network structures become 3-D simple and 2-D isolated network structures, resulting in lower viscosities. The apparent activation energy for viscous flow varied from 132 to 249 kJ/mol according to the composition of B2O3 and CaO/Al2O3 ratio.  相似文献   

13.
14.
Viscosities of B2O3 and TiO2‐bearing fluoride‐free mold fluxes have been measured by the rotating cylinder method in this work. Effects of different B2O3, TiO2 content, and basicities on the viscosity characteristics have been examined. Viscosity of fluoride‐free mold fluxes containing B2O3 and TiO2 was found to decrease with the increase of B2O3, TiO2 content, and basicity. The values of apparent activation energy for viscous flow of slags decrease with additions of B2O3 and TiO2 and the increase of basicity. Two parameters A and B in Riboud model were re‐evaluated based on the present experimental data, and the modified Riboud model was used to estimate the viscosity of fluoride‐free slag system investigated in present work. The viscosity values obtained by the experimental measurement were in good agreement with those calculated by the modified Riboud model.  相似文献   

15.
The crystallization behavior of a CaO-Al2O3-based slag system with various ZrO2 content (from 1 to 5 wt pct) and CaO/Al2O3 (C/A) ratio (from 0.8 to 1.2) has been studied by using single hot thermocouple technology (SHTT) in this article. The continuous-cooling-transformation (CCT) diagrams and time-temperature-transformation (TTT) diagrams of the above slag system were constructed for the analysis of the varying crystallization behaviors. The results suggested that Al2O3 tended to enhance the slag samples crystallization when the C/A ratio ranged from 0.8 to 1.2, and the critical cooling rate and crystallization temperature increased with the decrease of C/A ratio; meanwhile, the incubation time was also getting shorter with the reduction of C/A ratio. The addition of ZrO2 would enhance the crystallization of slag samples because of the induced heterogeneous nucleation of molten slag. However, the general crystallization was determined by the balance between molten slag viscosity and heterogeneous nucleation, such that Sample 3 (C/A = 1.0, ZrO2 = 3 pct, B2O3 = 10 pct, Li2O = 3 pct [in wt pct]) would demonstrate the strongest crystallization kinetics in a high-temperature zone. The different crystals formed during the tests were also analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD).  相似文献   

16.
Metallurgical and Materials Transactions B - B2O3 and Na2O are key components of fluorine-free mold fluxes for continuous casting, but both are highly volatile, which affects the flux stability....  相似文献   

17.
 Fluorite is widely employed as fluxing agent in metallurgy flux, which inevitably leads to serious fluorine pollution. B2O3 is employed as fluxing agent of CaO-SiO2-Fe2O3 steelmaking fluxes to substitute for CaF2. The effects of B2O3 and CaF2 on the melting properties of this system were investigated. The melting temperatures of fluxes including softening temperature (Ts), hemispherical temperature (Th), and flow temperature (Tf) were measured using the hemisphere method. The results indicate that the fluxing effect of B2O3 is more significant than that of CaF2. When the addition amount of B2O3 (mass percent) exceeds 6%, the melting temperatures of fluxes including Ts, Th and Tf are decreased lower than 1300 ℃. The basicity of fluxes has a significant effect on the melting temperature, and the melting temperatures of the fluxes increase with the increase of fluxes basicity. However, when B2O3 is used as fluxing agent, the melting temperature changes little with the basicity increasing from 2. 5 to 5. 0. These characteristics are suitable for steelmaking process. Moreover, Fe2O3 has an important fluxing effect on this CaO-based steelmaking fluxes. This indicates that the fluxes system is suitable for steelmaking process.  相似文献   

18.
Radiative heat transfer plays a crucial role in the meniscus area of a steel continuous casting machine. However, the study of radiation across the mold flux and copper molds is very difficult due to the harsh environment and highly transient nature of the phenomena in continuous casting molds. By using an infrared radiation emitter, a radiative heat flux was able to be applied to a copper mold with different top surfaces to observe their effects on the radiative heat transfer. The mold surface was covered with solid slag disk subjected to the radiative heat flux to simulate the radiative heat transfer phenomena in continuous casting. The solid slag disk could either be glass or a mixture of glass and precipitated crystals. The effect of full crystallization of a slag disk was to reduce the heat transfer rate by 20.5%, as compared with a completely glassy sample.  相似文献   

19.
The effect of Li2O content on the behavior of melting, crystallization, and molten structure for CaO-Al2O3-based mold fluxes was investigated in this article, through use of single hot thermocouple technology (SHTT), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and X-ray diffraction (XRD). The SHTT results showed that the melting temperature range of the designed mold fluxes decreases and the crystallization of mold fluxes is inhibited first and then becomes enhanced when the Li2O content increases from 1 to 6 mass pct. The FTIR and Raman spectroscopy results suggested that Li2O could release O2? ions to break the complex Al-O-Al structural unit into Al-O? structure. Meanwhile, Li2O could also stabilize the structural unit of Si-O-Al by link aluminate and Q 0 Si structure through providing Li+ ions to merge into the network and compensate for the charges between Al3+ and Si4+. Besides, the XRD results indicated that the precipitation of LiAlO2 in molten slag would enhance the crystallization behavior of mold flux when Li2O content is over 4.5 mass pct.  相似文献   

20.
采用 WCT-2型差热分析天平和LEITZ光学显微镜(配有 1350℃高温热台),研究了冷却速率对连铸保护渣结晶性能的影响.研究结果表明:随冷却速率提高,保护渣的结晶温度显著降低,结晶率降低,晶体尺寸减小,晶形也有很大改变.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号