首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are non-invasive methods of brain stimulation (NIBS) that can induce significant effects on cortical and subcortical neural networks. Both methods are relatively safe if appropriate guidelines are followed, and both can exert neuromodulatory effects that may be applied to the investigation of the autonomic nervous system (ANS). In addition, ANS measures can shed important light onto the neurobiologic mechanisms of NIBS. Here we present a systematic review on studies testing NIBS and ANS simultaneously. We structure our findings into four broad (not mutually exclusive) categories: (i) studies in which ANS function was modified by NIBS versus those in which it was not; (ii) studies in which NIBS was used to understand ANS function, (iii) studies in which ANS was used to understand NIBS mechanisms and (iv) NIBS/ANS studies conducted in healthy subjects versus those in patients with neuropsychiatric diseases. Forty-four articles were identified and no conclusive evidence of the effects of NIBS on ANS was observed, mainly because of the heterogeneity of included studies. Based on a comprehensive summary of this literature we propose how NIBS might be further developed to enhance our understanding of the cortical mechanisms of autonomic regulation and perhaps to modulate autonomic activity for therapeutic purposes.  相似文献   

4.
《Clinical neurophysiology》2014,125(9):1809-1818
ObjectiveThis study investigated the effect of rate and stimulation interval of anodal transcranial direct current stimulation (a-tDCS) on CSE and motor performance.MethodsTwelve healthy individuals participated in this study. CSE was assessed before and after five experimental conditions of one, two or three applications of 10 min of a-tDCS with an interval of 5 or 25 min. a-tDCS was applied with a constant current density of 0.016 mA/cm2. Purdue pegboard-test was selected for motor performance assessment.ResultsCompared to single 10 min stimulation, the magnitude of the within-session repeated a-tDCS induced excitability was enhanced significantly after the second stimulation was performed with an interval of 25 min, but not 5 min. However, by increasing the number of a-tDCS to three repetitions the CSE was significantly increased and lasted for 2 h with both 5 and 25 min intervals. Furthermore, CSE enhancement remained significant for up to 24 h for within session a-tDCS repetitions with 25 min intervals. Likewise, significant improvement was seen in motor performance following three times repetition with 25 min inter-stimulus intervals.ConclusionsThe results suggest that within session repeated a-tDCS with longer intervals within the lasting effects of the previous stimulations are preferable for increasing induced excitability changes with longer lasting effects. Significance: It is of particular importance to increase the a-tDCS lasting effects to consolidate the neuroplastic CSE changes.  相似文献   

5.

Background

Neuropsychiatric disorders are a leading source of disability and require novel treatments that target mechanisms of disease. As such disorders are thought to result from aberrant neuronal circuit activity, neuromodulation approaches are of increasing interest given their potential for manipulating circuits directly. Low intensity transcranial electrical stimulation (tES) with direct currents (transcranial direct current stimulation, tDCS) or alternating currents (transcranial alternating current stimulation, tACS) represent novel, safe, well-tolerated, and relatively inexpensive putative treatment modalities.

Objective

This report seeks to promote the science, technology and effective clinical applications of these modalities, identify research challenges, and suggest approaches for addressing these needs in order to achieve rigorous, reproducible findings that can advance clinical treatment.

Methods

The National Institute of Mental Health (NIMH) convened a workshop in September 2016 that brought together experts in basic and human neuroscience, electrical stimulation biophysics and devices, and clinical trial methods to examine the physiological mechanisms underlying tDCS/tACS, technologies and technical strategies for optimizing stimulation protocols, and the state of the science with respect to therapeutic applications and trial designs.

Results

Advances in understanding mechanisms, methodological and technological improvements (e.g., electronics, computational models to facilitate proper dosing), and improved clinical trial designs are poised to advance rigorous, reproducible therapeutic applications of these techniques. A number of challenges were identified and meeting participants made recommendations made to address them.

Conclusions

These recommendations align with requirements in NIMH funding opportunity announcements to, among other needs, define dosimetry, demonstrate dose/response relationships, implement rigorous blinded trial designs, employ computational modeling, and demonstrate target engagement when testing stimulation-based interventions for the treatment of mental disorders.  相似文献   

6.
Given the intrinsic connection between the brain and the heart, a recent body of research emerged with the aim to influence cardiovascular system functioning by non-invasive brain stimulation (NIBS) methods such as repetitive transcranial magnetic stimulation and transcranial direct current stimulation. Despite the implications of cardiovascular activity modulation for therapeutic purposes, such effects of NIBS have not yet been quantified. The aim of this study was to meta-analyze studies on NIBS effects on blood pressure (BP), heart rate (HR) and its variability (HRV). PubMed and Scopus databases were searched for English language studies conducted in humans. Twenty-nine studies were eligible for the analyses. Pooled effect sizes (Hedges’ g) were compared. Random effect models were used. NIBS was effective in reducing HR (g = 0.17) and enhancing HRV (g = 0.30). A marginal effect emerged for BP (g = 0.21). Significant moderators were the stimulation technique and the site of stimulation. Results show that NIBS affects cardiovascular and autonomic nervous system activity, confirming a potential pathogenic brain-heart pathway to cardiovascular disease.  相似文献   

7.
《Brain stimulation》2014,7(4):521-524
Computational models of brain current flow during transcranial electrical stimulation (tES), including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), are increasingly used to understand and optimize clinical trials. We propose that broad dissemination requires a simple graphical user interface (GUI) software that allows users to explore and design montages in real-time, based on their own clinical/experimental experience and objectives. We introduce two complimentary open-source platforms for this purpose: BONSAI and SPHERES. BONSAI is a web (cloud) based application (available at neuralengr.com/bonsai) that can be accessed through any flash-supported browser interface. SPHERES (available at neuralengr.com/spheres) is a stand-alone GUI application that allow consideration of arbitrary montages on a concentric sphere model by leveraging an analytical solution. These open-source tES modeling platforms are designed go be upgraded and enhanced. Trade-offs between open-access approaches that balance ease of access, speed, and flexibility are discussed.  相似文献   

8.
BackgroundThe initial COVID-19 pandemic shutdown led to the canceling of elective surgeries throughout most of the USA and Canada.ObjectiveThis survey was carried out on behalf of the Parkinson Study Group (PSG) to understand the impact of the shutdown on deep brain stimulation (DBS) practices in North America.MethodsA survey was distributed through RedCap® to the members of the PSG Functional Neurosurgical Working Group. Only one member from each site was asked to respond to the survey. Responses were collected from May 15 to June 6, 2020.ResultsTwenty-three sites participated; 19 (83%) sites were from the USA and 4 (17%) from Canada. Twenty-one sites were academic medical centers. COVID-19 associated DBS restrictions were in place from 4 to 16 weeks. One-third of sites halted preoperative evaluations, while two-thirds of the sites offered limited preoperative evaluations. Institutional policy was the main contributor for the reported practice changes, with 87% of the sites additionally reporting patient-driven surgical delays secondary to pandemic concerns. Pre-post DBS associated management changes affected preoperative assessments 96%; electrode placement 87%; new implantable pulse generator (IPG) placement 83%; IPG replacement 65%; immediate postoperative DBS programming 74%; and routine DBS programming 91%.ConclusionThe COVID-19 pandemic related shutdown resulted in DBS practice changes in almost all North American sites who responded to this large survey. Information learned could inform development of future contingency plans to reduce patient delays in care under similar circumstances.  相似文献   

9.
Major depressive disorder (MDD) is a common psychiatric illness, with 6-12% lifetime prevalence. It is also among the five most disabling diseases worldwide. Current pharmacological treatments, although relatively effective, present important side effects that lead to treatment discontinuation. Therefore, novel treatment options for MDD are needed. Here, we discuss the recent advancements of one new neuromodulatory technique--transcranial direct current stimulation (tDCS)--that has undergone intensive research over the past decade with promising results. tDCS is based on the application of weak, direct electric current over the scalp, leading to cortical hypo- or hyper-polarization according to the specified parameters. Recent studies have shown that tDCS is able to induce potent changes in cortical excitability as well as to elicit long-lasting changes in brain activity. Moreover, tDCS is a technique with a low rate of reported side effects, relatively easy to apply and less expensive than other neuromodulatory techniques--appealing characteristics for clinical use. In the past years, 4 of 6 phase II clinical trials and one recent meta-analysis have shown positive results in ameliorating depression symptoms. tDCS has some interesting, unique aspects such as noninvasiveness and low rate of adverse effects, being a putative substitutive/augmentative agent for antidepressant drugs, and low-cost and portability, making it suitable for use in clinical practice. Still, further phase II and phase III trials are needed as to better clarify tDCS role in the therapeutic arsenal of MDD.  相似文献   

10.
A range of techniques are now available for modulating the activity of the brain in healthy people and people with neurological conditions. These techniques, including transcranial magnetic stimulation (TMS) and transcranial current stimulation (tCS, which includes direct and alternating current), create magnetic or electrical fields that cross the intact skull and affect neural processing in brain areas near to the scalp location where the stimulation is delivered. TMS and tCS have proved to be valuable tools in behavioural neuroscience laboratories, where causal involvement of specific brain areas in specific tasks can be shown. In clinical neuroscience, the techniques offer the promise of correcting abnormal activity, such as when a stroke leaves a brain area underactive. As the use of brain stimulation becomes more commonplace in laboratories and clinics, we discuss the safety and ethical issues inherent in using the techniques with human participants, and we suggest how to balance scientific integrity with the safety of the participant.  相似文献   

11.
《Clinical neurophysiology》2014,125(2):344-351
ObjectiveWe aimed to compare the effects of anodal-transcranial pulsed current stimulation (a-tPCS) with conventional anodal transcranial direct current stimulation (a-tDCS) on corticospinal excitability (CSE) in healthy individuals.MethodsCSE of the dominant primary motor cortex of the resting right extensor carpi radialis muscle was assessed before, immediately, 10, 20 and 30 min after application of four experimental conditions: (1) a-tDCS, (2) a-tPCS with short inter-pulse interval (a-tPCSSIPI, 50 ms), (3) a-tPCS with long inter-pulse interval (a-tPCSLIPI., 650 ms) and (4) sham a-tPCS. The total charges were kept constant in all experimental conditions except sham condition. The outcome measure in this study was motor evoked potentials.ResultsOnly a-tDCS and a-tPCSSIPI (P < 0.05) induced significant increases in CSE, lasted for at least 30 min. Post-hoc tests indicated that this increase was larger in a-tPCSSIPI (P < 0.05). There were no significant changes following application of a-tPCSLIPI and sham a-tPCS. All participants tolerated the applied currents in all experimental conditions very well.ConclusionsCompared to a-tDCS, a-tPCSSIPI is a better technique for enhancement of CSE. There were no sham effects for application of a-tPCS. However, unlike a-tDCS which modifies neuronal excitability by tonic depolarization of the resting membrane potential, a-tPCS modifies neuronal excitability by a combination of tonic and phasic effects.Significancea-tPCS could be considered as a promising neuromodulatory tool in basic neuroscience and as a therapeutic technique in neurorehabilitation.  相似文献   

12.
13.
The interest in non-invasive brain stimulation techniques is increasing in recent years. Among these techniques, transcranial direct current stimulation (tDCS) has been the subject of great interest among researchers because of its easiness to use, low cost, benign profile of side effects and encouraging results of research in the field. This interest has generated several studies and randomized clinical trials, particularly in psychiatry. In this review, we provide a summary of the development of the technique and its mechanism of action as well as a review of the methodological aspects of randomized clinical trials in psychiatry, including studies in affective disorders, schizophrenia, obsessive compulsive disorder, child psychiatry and substance use disorder. Finally, we provide an overview of tDCS use in cognitive enhancement as well as a discussion regarding its clinical use and regulatory and ethical issues. Although many promising results regarding tDCS efficacy were described, the total number of studies is still low, highlighting the need of further studies aiming to replicate these findings in larger samples as to provide a definite picture regarding tDCS efficacy in psychiatry.  相似文献   

14.
15.
IntroductionTraditionally, medical care and research in Parkinson's disease (PD) have been conducted with in-person encounters. The recent COVID-19 pandemic has profoundly impacted the delivery of in-person clinical care and clinical research. We conducted an online survey of active clinician members of the Parkinson Study Group (PSG) to evaluate the adoption of various non-face-to-face methods in clinical practice and research in PD during the COVID-19 pandemic.MethodsWe conducted a survey using the open-access online SurveyMonkey tool (http://www.surveymonkey.com). The survey had 27 items and was designed to elucidate clinical/research care before and during the COVID-19 pandemic. The survey was sent to 414 active PSG members with weekly reminders and it remained accessible for 30 days from May 2020.ResultsWe received 142 responses, of which 133 (93.7%) provided demographic data. The clinical use of virtual visits via synchronous video conferencing increased from 39.5% pre-COVID-19 to 94.6% during the COVID-19 pandemic. Lack of access for patients (68.2%) and patient resistance (51.4%) were the top barriers for its use. Approximately 70% respondents stated that 75–100% of their research activities were suspended during the COVID-19 pandemic. Many sites had to fill out protocol deviations (38.2%), protocol exceptions (25.5%) or change their research profile due to layoffs (16.8%). The overall use of video conferencing increased from 30.3% to 64.1%.ConclusionThe current results suggest a need for flexibility in conducting office visits and clinical trials in PD patients. Technology has the potential to enhance patient care and convenience, when in-person visits can be challenging.  相似文献   

16.
《Brain stimulation》2020,13(3):686-693
BackgroundTranscranial direct current stimulation (tDCS) is a method of noninvasive neuromodulation and potential therapeutic tool to improve functioning and relieve symptoms across a range of central and peripheral nervous system conditions. Evidence suggests that the effects of tDCS are cumulative with consecutive daily applications needed to achieve clinically meaningful effects. Therefore, there is growing interest in delivering tDCS away from the clinic or research facility, usually at home.ObjectiveTo provide a comprehensive guide to operationalize safe and responsible use of tDCS in home settings for both investigative and clinical use.MethodsProviding treatment at home can improve access and compliance by decreasing the burden of time and travel for patients and their caregivers, as well as to reach those in remote locations and/or living with more advanced disabilities.ResultsTo date, methodological approaches for at-home tDCS delivery have varied. After implementing the first basic guidelines for at-home tDCS in clinical trials, this work describes a comprehensive guide for facilitating safe and responsible use of tDCS in home settings enabling access for repeated administration over time.ConclusionThese guidelines provide a reference and standard for practice when employing the use of tDCS outside of the clinic setting.  相似文献   

17.
18.
《Brain stimulation》2014,7(1):113-121
In this study we tested the hypothesis whether a lasting change in the excitability of cortical output circuits can be obtained in healthy humans by combining a peripheral nerve stimulation during a concomitant depolarization and/or hyperpolarization of motor cortex. To reach this aim we combined two different neurophysiological techniques each of them able to induce a lasting increase of cortical excitability by them self: namely median nerve repetitive electrical stimulation (rEPNS) and transcranial direct current stimulation (tDCS). Ten normal young volunteers were enrolled in the present study. All subjects underwent five different protocols of stimulation: (1, 2) tDCS alone (anodal or cathodal); (3) Sham tDCS plus rEPNS; (4, 5) anodal or cathodal tDCS plus rEPNS. The baseline MEP amplitude from abductor pollicis brevis (APB) and flexor carpi radialis (FCR) muscle, the FCR H-reflex were compared with that obtained immediately after and 10, 20, 30, 60 min after the stimulation protocol. Anodal tDCS alone induced a significant transient increase of MEP amplitude immediately after the end of stimulation while anodal tDCS + rEPNS determined MEP changes which persisted for up 60 min. Cathodal tDCS alone induced a significant reduction of MEP amplitude immediately after the end of stimulation while cathodal tDCS + rEPNS prolonged the effects for up to 60 min. Sham tDCS + rEPNS did not induce significant changes in corticospinal excitability. Anodal or cathodal tDCS + rEPNS and sham tDCS + rEPNS caused a lasting facilitation of H-reflex. These findings suggest that by providing afferent input to the motor cortex while its excitability level is increased or decreased by tDCS may be a highly effective means for inducing an enduring bi-directional plasticity. The mechanism of this protocol may be complex, involving either cortical and spinal after effects.  相似文献   

19.
Substance use disorders (SUDs) can be viewed as a pathology of neuroadaptation. The pharmacological overstimulation of neural mechanisms of reward, motivated learning and memory leads to drug-seeking behavior. A critical characteristic of SUDs is the appearance of craving, the motivated desire and urge to use, which is a main focus of current pharmacological and behavioral therapies. Recent proof-of-concept studies have tested the effects of noninvasive brain stimulation on craving. Although its mechanisms of action are not fully understood, this approach shows interesting potential in tuning down craving and possibly consumption of diverse substances. This article reviews available results on the use of repetitive transcranial magnetic stimulation (rTMS) and transcranial electrical stimulation (tES) in SUDs, specifically tobacco, alcohol and psychostimulant use disorders. We discuss several important factors that need to be addressed in future works to improve clinical assessment and effects of noninvasive brain stimulation in SUDs. Factors discussed include brain stimulation devices and parameters, study designs, brain states and subjects’ characteristics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号