首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of NADP-GPD from spinach chloroplasts are biphasic vs NADPH and PGA. Thus, two maximum velocities exist with an intermediary plateau and two Km values. Activation by NADPH + DTT increases Vmax of both sections, but does not change the substrate affinities. Sulphite reduces the maximum activities of both sections vs NADPH, however, it causes normal substrate kinetics vs PGA; even Vmax is reduced. Sulphite, present only during the activation process, suppresses the enzyme form with the higher Vmax. The kinetics vs NADH are also biphasic; the activity is strongly reduced by preincubation of the chloroplasts with NADH + DTT or at NADH concentrations > 0.4mM. Using NADH as cofactor, inverted peaks in the kinetics vs PGA occur; sulphite is active in a similar way as when NADPH is used as cofactor. The biphasic kinetics are discussed with respect to additional potential for regulation of enzyme activity according to illumination and NADPH concentrations respectively.  相似文献   

2.
Non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (np-Ga3PDHase) plays a key metabolic role in higher plants. Purification to homogeneity of enzymes found in relatively low abundance in plants represents a major technical challenge that can be solved by molecular gene cloning and heterologous expression. To apply this strategy to np-Ga3PDHase we performed the cloning of the gapN gene from Arabidopsis thaliana and Triticum aestivum, followed by the heterologous expression in Escherichia coli by two different strategies. Soluble expression of the Arabidopsis enzyme in the pET32c+ vector required a chaperone co-expression system (pGro7). The system using E. coli BL21-CodonPlus® cells and the pRSETB vector was successful for expression of a soluble His6-taged recombinant wheat enzyme producing 2.5 mg of electrophoretically pure protein per liter of cell culture after a single chromatographic purification step. Both systems were effective for the expression of functional plant np-Ga3PDHases, however the expression of the Arabidopsis enzyme in pRSETB was affordable but not as optimal as for the wheat protein. This would be associated with a different codon usage preference between this specific plant and E. coli. Considering the relevant role played by np-Ga3PDHase in plant metabolism, it is experimentally valuable the development of a procedure to obtain adequate amounts of highly purified enzyme, which envisages the viability to perform studies of structure-to-function relationships to better understand the enzyme kinetics and regulation, as well as carbon and energy metabolism in higher plants.  相似文献   

3.
We investigated changes in the sub-cellular distribution of glycelaldehyde-3-phosphate dehydrogenase (GAPDH) after X-ray irradiation in HeLa cells. Twenty-four h after irradiation at 5 Gy, nuclear GAPDH levels increased 2.6-fold, whereas total GAPDH levels increased only 1.2-fold. Knockdown of GAPDH using specific small interfering RNA (siRNA) led to sensitization to X-ray-induced cell death. These results suggest that GAPDH plays a role in the radioresponse.  相似文献   

4.
根据NaHCO3胁迫下西伯利亚蓼茎部消减库中甘油醛-3-磷酸脱氢酶基因(GAPDH)表达序列标签序列设计引物,采用cDNA末端快速扩增技术,从西伯利亚蓼茎中扩增出GAPDH的全长cDNA序列。该cDNA序列全长1331bp,完整阅读框1014bp,编码337个氨基酸。属于稳定蛋白,具有GAPDH保守功能域。氨基酸组成与其他已知高等植物来自细胞质中的GAPDH基因cDNA序列具有很高的同源性,最高可以达到96%。通过转酿酒酵母INVSC1的NaHCO3和NaCl胁迫试验表明,转基因INVSC1(pYES2-GAPDH)有明显的抗盐胁迫特性。在10%NaHCO3和4mol·L-1 NaCl胁迫下,转基因INVSC1(pYES2-GAPDH)菌株存活率明显比INVSC1(pYES2)高,可以推测GAPDH基因赋予INVSC1(pYES2-GAPDH)抗NaHCO3和NaCl的能力。该基因的cDNA序列在GenBank中登录号为DQ922680。  相似文献   

5.
Abstract: The molecular origin of protein stability has been the subject of active research for more than a generation (R. Jaenicke (1991) Eur. J. Biochem. 202, 715–728). Faced with the discovery of extremophiles, in recent years the problem has gained momentum, especially because of its biotechnological potential. In analyzing a number of enzymes from the hyperthermophilic bacterium Thermotoga maritima , it has become clear that the excess free energy of stabilization is equivalent to only a few weak bonds ( ΔΔG stab≈ 50 kJ/mol). As taken from the comparison of homologous enzymes from mesophiles, thermophiles and hyperthermophiles, these accumulate from local interactions (especially ion pairs), enhanced secondary or supersecondary structure, and improved packing of domains and/or subunits, without significantly altering the overall topology. In this review, glyceraldehyde-3-phosphate dehydrogenase will be discussed as a representative example to illustrate possible adaptive strategies to the extreme thermal stress in hydrothermal vents.  相似文献   

6.
D Glyceraldehyde 3 phosphatedehydrogenase(GAPDH ,EC 1.2 .1.12 )isakeyenzymeoftheglycolyticpathwaythatispresentinthecytosolofallorganismssofarstudied[1] .TheglycolyticGAPDHhasbeenremarkablyconservedduringevolution ,havingahomotetramericstructurewithsubunitsof 35 - 37kD[1] .GAPDHhasbeenisolatedfromavarietyofspecies[2 ] ,includingmesophilic ,moderatelythermophilicandhyperthermophilicmicroorganisms[3 ] .Theseenzymes ,whichdifferinthermalstability ,havebeenshowntobehighlysimilarinaminoacidse…  相似文献   

7.
The growth of Pyrobaculum aerophilum on yeast extract and nitrate was stimulated by the addition of maltose. Extracts of maltose/yeast extract/nitrate-grown cells contained all enzyme activities of a modified Embden-Meyerhof (EM) pathway, including ATP-dependent glucokinase, phosphoglucose isomerase, ATP-dependent 6-phosphofructokinase, fructose-1,6-phosphate aldolase, triose-phosphate isomerase, GAPOR, phosphoglycerate mutase, enolase and pyruvate kinase. The activity of GAPOR was stimulated about fourfold by maltose, indicating a role in sugar degradation. GAPOR was purified 200-fold to homogeneity and characterized as a 67 kDa monomeric, extremely thermostable protein. The enzyme showed high specificity for glyceraldehyde-3-phosphate and did not use glyceraldehyde, acetaldehyde or formaldehyde as substrates. By matrix-assisted laser desorption/ionization-time of flight analysis of the purified enzyme, ORF PA1029 was identified as a coding gene, gapor, in the sequenced genome of Pyrobaculum aerophilum. The data indicate that the (micro)aerophilic Pyrobaculum aerophilum contains a functional GAPOR as part of a modified EM pathway. Cells of the strictly aerobic crenarchaeon Aeropyrum pernix also contain enzyme activities of a modified EM pathway similar to that of Pyrobaculum aerophilum, except that a GAPN activity replaces GAPOR activity.  相似文献   

8.
α-Amino acids (glycine, serine, histidine, aspartic acid and cysteine) and dithiothreitol (DTT) have been shown to activate both activities of the NAD(NADP)-dependent glyceraldehyde-3-phosphate dehydrogenase from Chlorella. The activation is allosteric and reaches 200–700%. The Hill coefficient values are close to 2 with all activators. ATP activates NADP-dependent but inhibits NAD-dependent activity, napp and K values being the same for both enzyme activities. In this case positive cooperativity is also observed (napp = 2.2). The present findings reveal the possible regulation of GAPD function in Chlorella with each of the coenzymes.  相似文献   

9.
10.
Two different glyceraldehyde-3-phosphate (G3P) dehydrogenase (phosphorylating) activities, namely NAD- and NADP-dependent, have been found in cell extracts of the cyanelle-bearing photosynthetic protist Cyanophora paradoxa. Whereas the two G3P dehydrogenase activities were detected with similar specific activity levels (0.1 to 0.2 U/mg of protein) in extracts of the photosynthetic organelles (cyanelles), only the NAD-dependent activity was found in the cytosol. Thus, a differential intracellular localization occurred. The perfect overlapping of the two G3P dehydrogenase activity peaks of the cyanelle in both hydrophobic interaction chromatography and subsequent FPLC (fast protein liquid chromatography) gel filtration indicated that the two activities were due in fact to a single NAD(P)-dependent G3P dehydrogenase (EC 1.2.1.-) with a molecular mass of 148,000. SDS-PAGE of active fractions from FPLC gel filtration showed that the intensity of the major protein band (molecular mass, 38,000) of the enzyme preparation clearly paralleled the activity elution profile, thus suggesting a tetrameric structure for the cyanelle dehydrogenase. On the other hand, FPLC gel filtration analysis of the cytoplasmic fraction revealed a NAD-dependent G3P dehydrogenase with a native molecular mass of 142,000, being equivalent to the classical glycolytic enzyme (EC 1.2.1.12) present in the cytosol of all the organisms so far studied. The significance of these results is discussed taking into account that the cyanobacteria, photosynthetic prokaryotes which share many structural and biochemical features with cyanelles and are considered as their ancestors, have a similar NAD(P)-dependent G3P dehydrogenase.Abbreviation FPLC Fast protein liquid chromatography  相似文献   

11.
植物3-磷酸甘油醛脱氢酶的多维本质   总被引:4,自引:1,他引:3  
3-磷酸甘油醛脱氢酶(GAPDH)作为一种糖酵解蛋白在糖酵解的能量产生中发挥着重要作用。它通常作为一种模式蛋白用于蛋白和酶的分析,也可以用作研究基因表达量的内在对照。然而,最近的相关研究表明,真核及原核生物的3-磷酸甘油醛脱氢酶实际上存在着一种多维本质,研究证明它在DNA修复、细胞凋亡、核RNA输出、及其在细胞周期中都发挥着重要的作用。尽管该酶在植物中的研究不如在哺乳动物中的深入,但研究已经陆续证明,3-磷酸甘油醛脱氢酶在植物中同样具有许多未被发现的功能,目前已经报道该酶在厌氧、热激、伤害以及能量供应中可能发挥着重要作用。本文旨在就国内外对于该酶在植物中的研究作一总结论述,以期推进科学界对它的更深入认识和研究。  相似文献   

12.
Summary Chloroplastic (NADP+) glyceraldehyde-3-phosphate dehydrogenase (E.C. 1.2.1.9) catalyzes the second reaction in photosynthesis after the fixation of carbon by RuBisCO. Chloroplast-bound (NADP+) G3PDH was resolved in soybean by starch gel electrophoresis using l-histidine-citrate buffer (pH 5.7). Histochemical staining revealed zymogram patterns indicative of a tetramer. A survey of soybean genotypes revealed differences in zymogram patterns between the principal cytoplasmic sources of the northern and southern US germplasms. In the soybean pedigree, an allelic frequency shift toward a five-banded pattern was observed. G3PDH polymorphism was due to allele associated with gene expression at the slow locus. No linkage was found between the slow locus of (NADP+) G3PDH and AC02, AC03, AC04, ACP, DIA1, IDH1, IDH2, PGM1, and PGM3. Developmental expression in the above-ground tissues was identical, whereas roots as a rule did not express (NADP+) G3PDH activity. The importance of chloroplast-bound (NADP+) G3PDH in photo-synthesis and its interesting mode of inheritance warrants further exploration of this enzyme in soybean.Technical contribution no. 3293 of the South Carolina Agricultural Experiment Station, Clemson University  相似文献   

13.
Two sensitive radioimmunoassays, based on a double-antibody technique, were developed which allow detection of nanogram amounts of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and of a so far unknown NADP(H)-binding protein present in human erythrocytes (designated FX).The two proteins isolated in homogeneous form from human erythrocytes were iodinated with 125I by means of lactoperoxidase. Antisera to both purified proteins were raised in rabbits and sequentially adsorbed on human erythrocytes and on human serum before use. No cross-reaction between the two proteins was apparent.Hemolysates from normal as well as from glucose-6-phosphate dehydrogenase-deficient subjects were investigated for their content in both immunoreactive proteins using the two radioimmunoassay methods. This preliminary study showed significantly lowered levels of immunoreactive glucose-6-phosphate dehydrogenase in erythrocytes from subjects carrying the Mediterranean variant of this enzyme (characterized by severe deficiency of catalytic activity), compared with normal subjects. This figure was reversed as concerns the content of immunoreactive FX which was found to be twice as high in glucose-6-phosphate dehydrogenase Mediterranean erythrocytes as in normal ones.The two purified proteins were submitted to a comparative analysis of their chemical properties including NH2-terminal residues, CNBr peptides and tryptic fingerprints. These studies revealed significant differences in the primary structures of the two proteins and therefore tend to exclude FX'x being a discrete product arising from degradation of native glucose-6-phosphate dehydrogenase. Moreover, amino axid analysis and tryptic fingerprints indicated that FX, as well as glucose-6-phosphatase dehydrogenase, is composed of very similar and possibly identical polypeptide chains.  相似文献   

14.
The steady-state kinetics of alcohol dehydrogenases (alcohol:NAD+ oxidoreductase, EC 1.1.1.1 and alcohol:NADP+ oxidoreductase, EC 1.1.1.2), lactate dehydrogenases (l-lactate:NAD+ oxidoreductase, EC 1.1.1.27 and d-lactate:NAD+ oxidoreductase, EC 1.1.1.28), malate dehydrogenase (l-malate:NAD+ oxidoreductase, EC 1.1.1.37), and glyceraldehyde-3-phosphate dehydrogenases [d-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12] from different sources (prokaryote and eukaryote, mesophilic and thermophilic organisms) have been studied using NAD(H), N6-(2-carboxyethyl)-NAD(H), and poly(ethylene glycol)-bound NAD(H) as coenzymes. The kinetic constants for NAD(H) were changed by carboxyethylation of the 6-amino group of the adenine ring and by conversion to macromolecular form. Enzymes from thermophilic bacteria showed especially high activities for the derivatives. The relative values of the maximum velocity (NAD = 1) of Thermus thermophilus malate dehydrogenase for N6-(2-carboxyethyl)-NAD and poly(ethylene glycol)-bound NAD were 5.7 and 1.9, respectively, and that of Bacillus stearothermophilus glyceraldehyde-3-phosphate dehydrogenase for poly(ethylene glycol)-bound NAD was 1.9.  相似文献   

15.
Bustos DM  Iglesias AA 《FEBS letters》2002,530(1-3):169-173
In wheat, non-phosphorylating, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN) was found to be encoded by one gene giving rise to a single protein. However, Western blots revealed two different subunits of about 58 and 60 kDa in endosperm and shoots. The latter was attributed to in vivo phosphorylation of shoot GAPN. No modification occurred in leaves, where the enzyme is composed by a single 58 kDa polypeptide. GAPN partially purified from shoots and endosperm was dephosphorylated in vitro with alkaline phosphatase. Phosphorylated GAPN exhibited similar affinity for substrates but a lower Vmax compared to the non-phosphorylated enzyme. Results suggest that reversible phosphorylation of GAPN could regulate NADPH production in the cytosol of heterotrophic plant cells.  相似文献   

16.
The elucidation of the interdependence between structural features and functions of somatic and sperm-specific isoenzymes of glyceraldehyde-3-phosphate dehydrogenase (GAPD and GAPDS, respectively) was the goal of comparative analysis of their primary structures. GAPDS was shown to lack the sequence similar to the atypical nuclear export signal motif (NES) of the somatic isoenzyme GAPD. This finding is confirmed by experimental data on the absence of interaction between GAPDS and antibodies 6C5 recognizing the NES motif in the sequence of GAPD. The lack of NES correlates with functional peculiarities of the sperm-specific enzyme that is tightly bound to the fibrous sheath of the sperm flagellum. The sequences of the two isoenzymes were examined for the short motifs that might participate in apoptosis, endocytosis, and DNA repair. Sites of phosphorylation by different protein kinases have been revealed in both isoenzymes, and their characteristic features are discussed. These observations can serve as the basis for subsequent search for new ways of regulating the two isoenzymes.  相似文献   

17.
Spinach (Spinacia oleracea L.) chloroplast NAD(P)-dependent glyceraldehyde 3-phosphate dehydrogenase (NAD(P)-GAPDH; EC 1.2.1.13) was purified. The association state of the protein was monitored by fast protein liquid chromatography-Superose 12 gel filtration. Protein chromatographed in the presence of NADP+ and dithiothreitol consisted of highly NADPH-active protomers of 160 kDa; otherwise, it always consisted of a 600-kDa oligomer (regulatory form) favoured by the addition of NAD+ in buffers and with low NADPH-dependent activity (ratio of activities with NADPH versus NADH of 0.2–0.4). Glycerate 1,3-bisphosphate (BPGA) was prepared enzymatically using rabbit-muscle NAD-GAPDH, and purified. Among known modulators of spinach NAD(P)-GAPDH, BPGA is the most effective on a molar basis in stimulating NADPH-activity of dark chloroplast extracts and purified NAD(P)-GAPDH (activation constant, K a= 12 M). It also causes the enzyme to dissociate into 160-kDa protomers. The K m of BPGA both with NADPH or NADH as coenzyme is 4–7 M. NAD+ and NADH are inhibitory to the activation process induced by BPGA. This compound, together with NADP(H) and ATP belongs to a group of substrate-modifiers of the NADPH-activity and conformational state of spinach NAD(P)-GAPDH, all characterized by K a values three- to tenfold higher than the K m. Since NADP(H) is largely converted to NAD(H) in darkened chloroplasts Heineke et al. 1991, Plant Physiol. 95, 1131–1137, it is proposed that NAD+ promotes NAD(P)-GAPDH association into a regulatory conformer with low NADPH-activity during dark deactivation. The process is reversed in the light by BPGA and other substrate-modifiers whose concentration increases during photosynthesis, in addition to reduced thioredoxin.Abbreviations BPGA glycerate 1,3-bisphosphate - Chl chlorophyll - DTT dithiothreitol - FPLC fast protein liquid chromatography - NAD(P)-GAPDH glyceraldehyde 3-phosphate dehydrogenase, NAD(P)-dependent - 3-PGA glyerate 3-phosphate - PGK phosphoglycerate kinase - Prt protein - Tricine N-tris (hydroxymethyl) methyl-glycine This work was supported by grants from the Ministero dell'Università e della Ricerca Scientifica e Technologica in years 1990–1991. We are grateful to Dr. G. Branlant (Laboratoire d'Enzymologie et de Génie Génétique, Vandoeuvre les Nancy, France) for introducing us to the BPGA purification procedure.  相似文献   

18.
The role of anchorless proteins on the surface of most pathogenic microorganisms has long been studied in context to their interactions with multiple host proteins, facilitating the dissemination of pathogen within the host tissues. In order to gain more insights into anthrax pathogenesis, we hereby report the presence of a prominent moonlighting enzyme, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on the surface and in the extracellular medium of Bacillus anthracis. Out of the three heterologously expressed recombinant isoforms, rGapA (334 amino acids in native form; GapA) showed a significant NAD+ mediated GAPDH activity, whereas rGapB (342 amino acids in native form; GapB) showed a slight activity with NADP+. The rGapN (479 amino acids in native form; GapN) was enzymatically inactive with either NAD+ or NADP+. GapA was ascertained to be present in the extracellular medium and on the surface of B. anthracis. On the other hand, GapN was absent from both the surface and extracellular medium, whereas GapB was scarcely present on the surface of B. anthracis. Human plasminogen predominantly interacted with the rGapA isoform at physiological concentrations and the interaction was found to be lysine dependent. Immunization with rGapA resulted in a significant protection upon challenge with Bacillus anthracis in the murine model.  相似文献   

19.
Apparent physical interaction between pea chloroplast (Pisum sativum L.) glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) and aldolase (EC 4.1.2.13) is seen in phase-partitioning, fluorescent-anisotropy and isoelectric-focusing experiments. Similarly, results obtained in phase-partitioning and isoelectric-focusing experiments indicate physical interaction between aldolase and triose-phosphate isomerase (EC 5.3.1.1). Kinetic experiments suggest that both aldolase-bound glyceraldehyde-3-phosphate and triose-phosphate isomerase bound glyceraldehyde-3-phosphate can act as substrate for glyceraldehyde-3-phosphate dehydrogenase. These results are consistent with the notion that there is interaction between these three enzymes both during photosynthetic CO2 fixation and during glycolysis in the chloroplast.Abbreviations FITC fluorescein isothiocyanate - glyceraldehyde3-P glyceraldehyde-3-phosphate - K partition coefficient - K m (ALD) apparent K m value obtained when aldolase levels are varied - K m (GAP) K m value obtained when glyceraldehyde-3-P concentrations are varied - K m (PGK) apparent K m value obtained when phosphoglycerate kinase levels are varied - K m (TPI) apparent K m value obtained when triose-P isomerase levels are varied - PEG polyethyleneglycol - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - triose-P triose phosphate We thank Fred J. Stevens, Argonne National Laboratory, for help in analysis of the tertiary structures, Göte Johansson, University of Lund, for hosting two of us in his laboratory where we did the initial phase-partitioning experiments, Chang-hou Li, Shanghai Research Centre of Biotechnology, for the use of the fluorimeter, Lawrence Sykora and the University of Illinois greenhouse staff for growing the pea plants, Jack T. Gibbons for electron microscopy, and Christie Aljets, Xua Ming Da, Xiang He, Arif Ali Khan, Fang Luo, Martha Pacold, Michael Pacold, Lei Shi, Hyun Moon Shin and Qi Zhao for their assistance with these experiments. Support came from the University of Illinois-Chicago Research Board, the US National Science Foundation (Grants DCB 9018265, INT 91-15490 and INT 91-13311) and the Chinese National Science Foundation (Grant 39230050).  相似文献   

20.
Streptococcus pyogenes gapN was cloned and expressed by functional complementation of the Escherichia gap mutant W3CG. The IPTG-induced NADP non-phosphorylating GAPDH (GAPN) has been purified about 75.4 fold from E. coli cells, using a procedure involving conventional ammonium sulfate fractionation, anion-exchange chromatography, hydrophobic chromatography and hydroxyapatite chromatography. The purified protein was characterised: it's an homotetrameric structure with a native molecular mass of 224 kDa, have an acid pI of 4.9 and optimum pH of 8.5. Studies on the effect of assay temperature on enzyme activity revealed an optimal value of about 60°C with activation energy of 51 KJ mole. The apparent Km values for NADP and D-G3P or DL-G3P were estimated to be 0.385 ± 0.05 and 0.666 ± 0.1 mM, respectively and the Vmax of the purified protein was estimated to be 162.5 U mg–1. The S. pyogenes GAPN was markedly inhibited by sulfydryl-modifying reagent iodoacetamide, these results suggest the participation of essential sulfydryl groups in the catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号