共查询到20条相似文献,搜索用时 15 毫秒
1.
We reported two pressure-induced phase transitions of goethite up to ~35?GPa using a diamond anvil cell in conjunction with ac impendence spectroscopy, Raman spectra at room temperature. The first pressure-induced phase transition at ~7.0?GPa is manifested in noticeable changes in six Raman-active modes, two obvious splitting phenomena for the modes and the variations in the slope of conductivity. The second phase transition at ~20?GPa was characterized by an obviously drop in electrical conductivity and the noticeable changes in the Raman-active modes. The variations in activation energy with increasing pressure were also discussed to reveal the electrical properties of goethite at high pressure. 相似文献
2.
The structural transformation of cesium lead iodine (CsPbI3) has been investigated in diamond anvil cells up to ~15 GPa at room temperature by employing synchrotron radiation X-ray diffraction and Raman spectroscopy. One reversible transformation from orthorhombic (Pnma) to monoclinic (P21/m) phase has been observed at 3.9 GPa. Isothermal pressure–volume relationship of orthorhombic CsPbI3 is well fitted by the third-order Birch–Murnaghan equation of state with K0 = 14(3) GPa, K′0 = 6(2) and V0 = 891(7) Å3. The ultralow value of bulk modulus K0 demonstrates the high compressible nature of CsPbI3, similar to those of organic–inorganic metal halide perovskites. The present results provide essential information on the intrinsic properties and stability of CsPbI3, which may be applied in photovoltaic devices. 相似文献
3.
4.
采用固相烧结法制备了六方晶型结构的MgTiO3粉体. 经高温原位X射线衍射分析(293-1473 K)进行了表征与确认,获得了晶胞参数及其随温度的变化,测量了高温原位拉曼光谱(273-1623 K),并运用第一性原理理论计算方法对应核实了拉曼谱峰的归属. 结果表明,随着温度升高,MgTiO3晶面间距和晶格常数增大,从而反映对于拉曼光谱较为敏感的键长和键角的变化;温致拉曼位移可以反映Ti-O,Mg-O等键长以及Ti-O-Ti,Ti-O-Mg与Mg-O-Mg等键角随温度的细微变化,相关关系则独立于温度,有效提升了原位拉曼光谱微探针诊断技术的分析能力;拉曼谱峰随温度升高而展宽,表明原子瞬间运动振幅加剧,弥散性增加,稳定性有所下降,但仍维持六方晶型.
关键词:
3')" href="#">MgTiO3
微结构
拉曼光谱
高温 相似文献
5.
Stephanie J. Rigby Soo-Keun Lee Peter K.J. Robertson 《Applied Surface Science》2006,252(22):7948-7952
The use of Raman and anti-stokes Raman spectroscopy to investigate the effect of exposure to high power laser radiation on the crystalline phases of TiO2 has been investigated. Measurement of the changes, over several time integrals, in the Raman and anti-stokes Raman of TiO2 spectra with exposure to laser radiation is reported. Raman and anti-stokes Raman provide detail on both the structure and the kinetic process of changes in crystalline phases in the titania material. The effect of laser exposure resulted in the generation of increasing amounts of the rutile crystalline phase from the anatase crystalline phase during exposure. The Raman spectra displayed bands at 144 cm−1 (A1g), 197 cm−1 (Eg), 398 cm−1 (B1g), 515 cm−1 (A1g), and 640 cm−1 (Eg) assigned to anatase which were replaced by bands at 143 cm−1 (B1g), 235 cm−1 (2 phonon process), 448 cm−1 (Eg) and 612 cm−1 (A1g) which were assigned to rutile. This indicated that laser irradiation of TiO2 changes the crystalline phase from anatase to rutile. Raman and anti-stokes Raman are highly sensitive to the crystalline forms of TiO2 and allow characterisation of the effect of laser irradiation upon TiO2. This technique would also be applicable as an in situ method for monitoring changes during the laser irradiation process. 相似文献
6.
用热液金刚石压腔装置结合拉曼光谱技术研究了高温高压下方解石的相变过程及拉曼光谱特征。结果表明:常温条件下,体系压力增至1 666和2 127 MPa时,方解石的拉曼特征峰155cm-1消失,1 087cm-1峰分裂为1 083和1 090cm-1两个谱峰、282cm-1峰突然降至231cm-1,证明其转变为方解石-Ⅱ和方解石-Ⅲ。在起始压力为2 761MPa和低于171℃的升温过程中,方解石-Ⅲ的拉曼散射的各个特征振动峰没有变化。当温度达到171℃,方解石晶体完全变成不透明状,其对称伸缩振动峰1 087cm-1、面内弯曲振动峰713cm-1和晶格振动峰155和282cm-1均发生突变,说明方解石-Ⅲ相变生成一种碳酸钙新相。体系降至常温,该新相一直保持稳定不变,表明高温高压下方解石向碳酸钙新相的转变过程是不可逆的。方解石-Ⅲ与碳酸钙新相之间的相变线方程为P(MPa)=9.09.T(℃)+1 880。碳酸钙新相的对称伸缩振动峰(ν1 087)随压力、温度的变化率分别为dν/dP=5.1(cm-1.GPa-1),dν/dT=-0.055 3(cm-1.℃-1)。 相似文献
7.
8.
The pressure- and photo-induced phase transition in mixed-valence gold complexes of Cs2Au2X6 (X = Cl, Br, and I) has been investigated by means of the Raman scattering. The Raman-active Au-X stretching modes were deactivated by the pressure, which indicates a pressure-induced phase transition from the mixed-valence (MV) state to the single-valence (SV) state. The electronic phase diagrams of Cs2Au2X6 (X = Cl and Br) as a function of pressure and temperature have been derived. A photoinduced phase transition from the MV state to the SV state has been found for Cs2Au2Br6. The observed time behavior accompanying this phase transition is successfully interpreted by the Avrami model, indicating the three-dimensional character of the MV cluster growth. 相似文献
9.
Z. H. Ni H. M. Fan X. F. Fan H. M. Wang Z. Zheng Y. P. Feng Y. H. Wu Z. X. Shen 《Journal of Raman spectroscopy : JRS》2007,38(11):1449-1453
High temperature Raman experiments were carried out on carbon nanowalls (CNWs). The intensity of the defect‐induced D mode decreased significantly after the sample was heated in air ambient. The Raman intensity ratio of D mode and G mode, ID/IG, changed from 2.3 at room temperature to 1.95 after the sample was heated to 600 °C. This change was attributed to the removal of surface amorphous carbon by oxidation. In contrast to ID/IG, the intensity ratio of the D′ mode and the G mode, ID′/IG, did not change much after heating, indicating that the surface amorphous carbon and surface impurity do not contribute as much to the intensity of the D′ mode. The dominant contributor to the D′ mode could be the intrinsic defects. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
10.
Structural properties of core and surface of silica nanoparticles investigated by Raman spectroscopy
A. Alessi S. Agnello G. Buscarino F. M. Gelardi 《Journal of Raman spectroscopy : JRS》2013,44(6):810-816
We studied the experimental Raman spectra of various commercial silica nanoparticles of average diameter from 7 to 40 nm and specific surface from 50 to 380 m2/g. We found that the peculiarities of the particles Raman spectra systematically depend on their specific surface. In detail, the peak position of the R band at about 440 cm−1 shifts towards high wavenumbers following an almost linear dependence on the specific surface. Similarly, the amplitudes of the D1 and D2 bands, at about 495 and 605 cm−1, respectively, increase linearly with the same quantity. Our results are interpreted in the frame of the shell model for the nanoparticles clarifying that the network of the core of the nanoparticles is comparable to the bulk silica materials, whereas the surface shell has a ring statistic shifted to the low member rings and features an higher density. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
11.
Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3 下载免费PDF全文
The layered van der Waals antiferromagnetic FePS3 has received considerable attention because long range magnetic ordering can remain with single atoms layer, which offers potential applications in future ultrathin devices. Here, we perform Raman spectroscopy to systematically explore the variations of lattice vibration and crystal structure under pressure up to 18.9 GPa. We observe two structural phase transitions at approximately 4 GPa and 13 GPa, respectively. Moreover, by monitoring spin-related Raman modes, we demonstrate a pressure-induced magnetic structure transition above 2 GPa. These modes disappear accompanying the second structural phase transition and insulator-to-metal transition (IMT), indicating the suppression of long-range magnetic ordering, in agreement with earlier neutron powder diffraction experiments. 相似文献
12.
Hard mode Raman spectroscopy and its application to ferroelastic and ferroelectric phase transitions
U. Bismayer 《Phase Transitions》2013,86(4):211-267
The application of Raman spectroscopy for the investigation of phase transitions focused traditionally on the observation of soft modes in displacive systems. The present furthergoing study on displacive and order-disorder systems is based on the observation of systematic changes of the scattering profiles of hard modes during the phase transition. It reveals the temperature evolution of the order parameters, the role of order-parameter fluctuations and phonon density of states effects in model systems like improper ferroelastic Pb3(P1-x As x O4)2, lead diluted ferroelastic (Pb1-x Ba x )3(PO4)2, pure ferroelastic As2O5 and the relaxor ferroelectric Pb(Sc0.5Ta0.5)O3. Allied with supplementary experimental techniques hard-mode Raman spectroscopy (HMRS) is an ideal method for the investigation of order-parameter coupling effects and the characterization of structural phase transitions. 相似文献
13.
Ramesh C. Sharma 《Optics Communications》2009,282(6):1183-1388
We present the experimental demonstration of a novel, efficient, and vibrational selective technique to prepare population in vibrational level v″ = 1 using the stimulated Raman pumping. Photoacoustic Raman signal has been studied in non-radiative transitions in the molecule H2 (v″ = 0) and (v″ = 1). The population fraction in the v″ = 1 level can be estimated by using combined photoacoustic Raman spectroscopy with stimulated Raman pumping for the first time. 相似文献
14.
R. Yuvakkumar 《Phase Transitions》2015,88(9):897-906
Niobium oxide nanocrystals were successfully synthesized employing the green synthesis method. Phase formation, microstructure and compositional properties of 1, 4 and 7 days incubation treated samples after calcinations at 450 °C were examined using X-ray diffraction, Raman, photoluminescence (PL), infrared, X-ray photoelectron spectra and transmission electron microscopic characterizations. It was observed that phase formation of Nb2O5 nanocrystals was dependent upon the incubation period required to form stable metal oxides. The characteristic results clearly revealed that with increasing incubation and aging, the transformation of cubic, orthorhombic and monoclinic phases were observed. The uniform heating at room temperature (32 °C) and the ligation of niobium atoms due to higher phenolic constituents of utilized rambutan during aging processing plays a vital role in structural phase transitions in niobium oxide nanocrystals. The defects over a period of incubation and the intensities of the PL spectra changing over a period of aging were related to the amount of the defects induced by the phase transition. 相似文献
15.
ABSTRACT The compressibility and effect of pressure on the vibrations of merrillite, Ca9NaMg(PO4)7, were studied by using diamond anvil cell at room temperature combined with in-situ synchrotron X-ray diffraction and Raman spectroscopy up to about 18 and 15?GPa, respectively. The pressure-volume data was fitted by a third-order Birch–Murnaghan equation of state to determine the isothermal bulk modulus as K0 ?=?87.2(32) GPa with pressure derivative K0′?=?3.2(4). If K0′?=?4, the isothermal bulk modulus was obtained as 81.6(10) GPa. The axial compressibility was estimated and an axial elastic anisotropy exists since a-axis is less compressible than the c-axis. The Raman frequencies of all observed modes for merrillite continuously increase with pressure, and the pressure dependences of stretching modes (v 3 and v 1) are larger than those of the bending modes (v 4 and v 2) and external modes. The isothermal mode Grüneisen parameters and intrinsic anharmonicity of merrillite were also calculated. 相似文献
16.
Raman study of a natural hydrous phlogopite was carried out at temperatures up to 500 °C for the first time. Evolution of four well-resolved Raman modes at wavenumbers 196, 278, 322, and 682 cm−1 was followed in detail with temperature increase. The analysis of data reveals linear decrease of vibrational wavenumbers in the studied temperature range, with small but experimentally significant discontinuities occurring at a temperature of 365±15 °C. Although the overall appearance of Raman spectra remains intact on crossing this temperature, the presence of discontinuities, as well as a marked difference between Gruneisen parameters calculated for high- and low-temperature ranges, signifies the presence of a temperature-induced phase transformation. By combining and correlating the results of the present Raman study with the high-temperature X-ray work performed by Tutti et al. [High-temperature study and thermal expansion of phlogopite, Phys. Chem. Miner. 27 (2000) 599-603] we arrive at the interpretation of a temperature-induced structural phase transformation in phlogopite without a significant symmetry change, with an underlying microscopic mechanism involving deformation of Mg octahedra and rotation of tetrahedral grid from ditrigonal toward hexagonal at the transition temperature. 相似文献
17.
Theoretical calculations predict that the collapse pressure for double-walled carbon nanotubes (DWCNTs) is proportional to 1/R 3, where R is the effective or average radius of a DWCNT. In order to address the problem of CNT stability at high pressure and stress, we performed a resonance Raman study of DWCNTs dispersed in sodium cholate using 532 and 633 nm laser excitation. Raman spectra of the recovered samples show minor versus irreversible changes with increasing I D/I G ratio after exposure to high non-hydrostatic pressure of 23 and 35 GPa, respectively. The system exhibits nearly 70% pressure hysteresis in radial breathing vibrational mode signals recovery on pressure release which is twice that predicted by theory. 相似文献
18.
Liqiong Xing 《Applied Surface Science》2010,256(11):3586-602
A CrOx-Y2O3 sample was prepared by a deposition-precipitation method and phase transformation of the sample under N2 and air atmospheres was characterized by in situ Raman spectroscopy and X-ray diffraction (XRD) techniques. It was found that when the CrOx-Y2O3 sample was heated, CrO3 transformed to YCrO4 and then to YCrO3 and Cr2O3. Also, the transformation started from the surface region of the sample and then extended to the bulk, due to the fact that the phase transformation was detected by Raman spectroscopy at lower temperature compared to that by XRD. In addition, both atmosphere and temperature had influence on the phase transformation in the surface region, while the phase transformation in the bulk was merely dependent on the temperature. It was also found that low oxidation state Cr(III) species on the surface could be re-oxidized to high oxidation state Cr(V) or Cr(VI) species when the thermal treated sample was exposed to ambient air. 相似文献
19.
20.
In this paper, Cr-doped LiSrAlF6 crystals are investigated using high-temperature Raman spectroscopy and the single-crystal Raman spectra of Cr:LiSrAlF6 are analysed by factor group theory and comparison with other fluorides. The results indicate that Cr:LiSrAlF6 is stable below its melting point; Raman peaks located at 561, 322 and 250 cm-1 are assigned to the A1g modes of AlF6, SrF6 and LiF6 octachdra, respectively; with temperature increasing, Raman peaks associated with AlF6 octahedra shift towards low frequencies, while LiF6 and SrF6 octahedra are temperature-insensitive; around the crystal melting point, three new Raman peaks occur, which are associated with the AlF6 octahedral chain structure. Finally, the microstructural evolution of Cr:LiSrAlF6 from room temperature to its melting point is discussed based on its Raman spectra. 相似文献