首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目前,聚苯胺防腐涂料已成为导电高分子材料的应用和涂料研究开发领域的一个新的热点。为了研究聚苯胺对涂层防腐性能的影响,制备了聚苯胺质量分数分别为0%,1%,3%,5%及10%的植酸掺杂聚苯胺/环氧防腐涂层,应用电化学阻抗谱和Tafel极化曲线等方法对比了其在3.5%Na C1溶液中的防腐性能。研究表明,聚苯胺在涂层中的含量对涂层的防腐性能有较大影响,聚苯胺质量分数为3%时,涂层具有最佳的防腐性能。  相似文献   

2.
为了进一步提高聚苯胺环氧涂层的防腐蚀性能,采用腰果酚改性二乙烯三胺作为固化剂,在聚苯胺环氧树脂体系中引入石墨烯。通过改变石墨烯和聚苯胺的质量比,探究两者之间的协同防腐蚀性能。借助扫描电子显微(SEM)观察到涂层表面石墨烯片层的存在,并测试了涂层的光泽和力学性能。结果表明:随着石墨烯加入量的增加,涂层光泽和硬度提高,耐冲击性下降,附着力不变。通过塔菲尔曲线测试评估涂层的防腐蚀性能,石墨烯与聚苯胺在环氧树脂体系中质量比为2∶1时,腐蚀电位最高,腐蚀电流密度最小,腐蚀速率最低,防腐蚀性能最好。  相似文献   

3.
运用插层聚合的方法制备了蒙脱土/聚苯胺复合材料,并进行了表征。将该复合材料通过共混的方式加入聚酰胺/环氧阴极电泳(CED)涂料中配制成聚苯胺/环氧复合阴极电泳涂料,并利用电化学阻抗谱方法对各电泳涂层的防腐性能进行了分析。研究发现:在3.5%NaCl溶液中浸泡10d后,腐蚀介质不能到达涂层/基底金属界面,金属表面没有发生腐蚀反应。随着聚苯胺含量的增加,复合电泳涂膜的阻抗值增加,具有较好的防腐性能。当聚苯胺含量相同时,与掺杂态聚苯胺复合电泳涂膜相比,本征态聚苯胺复合电泳涂膜具有很高的阻抗值,表现出更好的防腐性能。  相似文献   

4.
以大分子量环氧树脂和聚苯胺为改性材料,制备了一种聚苯胺改性丙烯酸-环氧聚氨酯底漆,研究了两者的加入量对底漆性能的影响,并利用电化学阻抗谱(EIS)研究了聚苯胺在改性底漆中的抗腐蚀作用。结果表明,大分子量环氧树脂和聚苯胺的引入提高了底漆涂层的耐碱性和耐盐雾性,EIS图谱显示改性涂层在3%NaCl中浸泡10 d后,阻抗较常规丙烯酸聚氨酯底漆涂层高约2个数量级;利用该改性方法,提高了常规丙烯酸聚氨酯底漆的耐介质性和防腐蚀性,扩展了聚氨酯底漆的应用领域。  相似文献   

5.
利用原位聚合的方法合成了不同质量比的聚苯胺/铬酸锶复合材料,使用扫描电镜(SEM)、透射电镜(TEM)、傅里叶变换红外光谱(FT-IR)和X射线衍射(XRD)对复合材料进行了表征,并在不锈钢片上制备了聚苯胺/铬酸锶复合材料的环氧涂层,利用电化学工作站和盐雾试验箱测试其防腐性能.测试结果表明:聚苯胺/铬酸锶复合材料的防腐效果优于聚苯胺,且当复合材料中聚苯胺与铬酸锶的质量比为1∶1时,防腐蚀性能最好,该复合材料环氧涂层的腐蚀电位较聚苯胺环氧涂层提高30 mV,腐蚀电流密度下降一半,降低成本的同时提高了其防腐性能.  相似文献   

6.
制备了分别由盐酸、硫酸、磷酸、植酸、甲基磺酸和十二烷基苯磺酸掺杂的聚苯胺(依次记为HCl-PANI、H2SO4-PANI、H3PO4-PANI、PA-PANI、MSA-PANI和DBSA-PANI)与本征态聚苯胺(EB-PANI),通过傅里叶变换红外光谱仪、紫外可见分光度计、X射线衍射仪、拉曼光谱仪及扫描电镜对它们的结构与形貌进行了表征。将不同的聚苯胺材料分别添加到环氧树脂中并涂覆在Q235碳钢表面,得到不同的聚苯胺/环氧(PANI/EP)涂层,对其铅笔硬度、附着力及湿润性进行测试,并通过电化学阻抗谱考察了它们在3.5%NaCl溶液中的耐蚀性,讨论了不同添加量、不同掺杂酸对聚苯胺/环氧涂层耐蚀性的影响。结果表明上述7种聚苯胺均呈珊瑚状结构。添加了聚苯胺的环氧涂层的防腐性能得到了不同程度的提高,其中聚苯胺的最佳添加量为0.6%,HCl-PANI与PA-PANI的效果最好。  相似文献   

7.
以氯磺酸、苯胺和过硫酸铵为主要原料合成磺化聚苯胺(SPANI),利用聚乙烯亚胺(PEI)还原GO,合成PG复合材料。利用GO上活性位点,将SPANI与PG结合,制备了SPG复合材料。利用SPG与水性环氧树脂共混制备水性环氧防腐涂料。通过FT-IR、XRD对SPG复合材料结构表征,结果表明,PEI上的氨基成功与GO结合,SPANI成功增加了PG的层间距;通过盐雾、电化学等实验对水性环氧涂层的防腐性能进行测定,并分析了涂层的物理性能。结果表明,当添加2wt%SPG时(添加量以环氧树脂和固化剂总质量为基准,下同)的水性环氧防腐涂层具有最优异的耐腐蚀性,腐蚀效率可达到99.19%,与纯EP相比,腐蚀电流密度从1080 nA?cm-2减小至307 nA?cm-2,腐蚀电压从-0.840mV升高至-0.347mV。  相似文献   

8.
采用直接混合氧化法分别在磷酸和硫酸体系中制备了掺杂态聚苯胺,通过研磨把聚苯胺分散到环氧树脂中制备复合涂层,研究了不同酸掺杂的聚苯胺在环氧树脂中的耐蚀性能以及聚苯胺用量对耐蚀性能影响.电化学阻抗谱研究发现,聚苯胺的加入提高了环氧涂层屏蔽保护效果并能提供钝化保护作用,合适的添加量为0.6%;盐雾试验结果表明,磷酸掺杂的聚苯胺在环氧树脂涂层中可以对基体提供较好的保护,而硫酸掺杂的聚苯胺保护效果较差.  相似文献   

9.
固化剂对涂层的防腐、力学性能起着至关重要的作用.以环氧树脂为成膜物质,采用原位复合法在环氧树脂体系中合成有机改性凹凸棒石/聚苯胺(OAT/PAn)复合涂层,分别使用改性脂肪胺固化剂593、酚醛胺固化剂T-31以及聚酰胺固化剂650对上述涂层进行固化,讨论了不同种类固化剂对涂层的化学结构、防腐和力学性能以及耐水性能的影响.利用FTIR 对比了各涂层的固化结构,证明了三种固化剂均可使复合涂层固化;SEM结果表明,593固化剂固化涂层的致密性最好;电化学实验结果表明,593固化剂的固化涂层防腐性能最佳,腐蚀电位达到了Ecorr=-318 mV,腐蚀电流密度Icorr=1.193×10-6 A·cm-2;通过划格法评价了各涂层的附着力,发现593固化剂固化效果最好,附着力可达5B;对比浸泡168 h后涂层的耐水性发现,593固化剂耐水性最好.  相似文献   

10.
分别以十二烷基硫酸钠(SDS)和木质素磺酸钠(LGS)为掺杂剂,通过化学氧化法合成了两种磺化聚苯胺(PANI-SDS和PANI-LGS),并将合成的磺化PANI混入溶胶-凝胶法制备的硅树脂(SiR)中,刷涂在Q235钢表面制备了复合防腐蚀涂层。采用FTIR表征了磺化PANI的结构;对比了PANI-LGS和PANI-SDS的基本性能,考察了SiR、PANI-SDS/SiR和PANI-LGS/SiR复合涂层的耐水性、附着力、机械性能及防腐蚀性能,并分析了复合涂层的防腐蚀机理。结果表明:制备的PANI-LGS/SiR复合涂层疏水性能较好,接触角达到113.0°,吸水率仅为7.58%。电化学测试结果表明,该复合涂层对Q235钢具有良好的防腐蚀性能,腐蚀速率为5.56×10~(-3) mm/a,复合涂层是通过物理屏蔽和阳极保护作用实现对金属的腐蚀防护。  相似文献   

11.
易飞 《化学工程师》2023,(9):109-112
通过低温单宁酸沉淀法制备Co3O4纳米棒,将其作为涂层填料可以有效提高涂层的耐腐蚀性能,同时检验了填料的最佳添加量。EIS与SVET的结果表明,Co3O4填料具有阻碍金属腐蚀的阴、阳极反应的能力,添加量为20wt%时,涂层耐腐蚀性最佳。  相似文献   

12.
显微红外技术研究聚苯胺涂层防腐蚀性能   总被引:1,自引:0,他引:1  
聚苯胺是一种导电高分子,聚苯胺涂料因其性价比较高而被看作是新一代环境友好型的高效防腐涂料.本研究以过硫酸铵为引发剂,十二烷基苯磺酸钠为乳化剂,采用乳液聚合法制备丙烯酸树脂乳液.分别采用乳液互穿网络聚合法和乳液共混法制备聚苯胺--丙烯酸树脂防腐蚀涂料,并利用红外显微镜技术分析聚苯胺在聚苯胺--丙烯酸树脂防腐蚀涂料中的分散性.涂层在马口铁上腐蚀电位和极化曲线的测试结果表明,采用乳液互穿网络聚合法制备的聚苯胺--丙烯酸树脂防腐蚀涂层在ω(NaCl)为3.5%的NaCl溶液中的开路电位比乳液共混法升高了0.596V,自腐蚀电流降低了1个数量级.  相似文献   

13.
主要通过聚苯胺环氧涂层的耐盐雾试验,考察了聚苯胺在环氧涂层中的防腐性能。试验结果表明聚苯胺具有较好的防腐性能,且600目的聚苯胺粉比200目有更好的防腐效果。聚苯胺与其他颜填料有较好的配伍性,添加到环氧磷酸锌涂料中,可提高其防腐性能。  相似文献   

14.
在纳米Al_2O_3粒子存在的情况下,以苯胺单体为原料,过硫酸铵为氧化剂,采用化学氧化聚合法制备了聚苯胺/纳米Al_2O_3,复合物。分别用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、紫外-可见分光光度计(UV-vis)和傅里叶变换红外光谱(FTIR)对产物进行形貌观察和结构表征。将涂覆含有聚苯胺和聚苯胺/纳米Al_2O_3,复合物涂层的碳钢片,浸泡于质量分数为3.5%的NaCl溶液中,通过开路电位、极化曲线和交流阻抗来评价涂层的防腐性能。结果表明,涂层中含有聚苯胺/纳米Al_2O_3复合物的碳钢片抗腐蚀能力强于含聚苯胺的碳钢片,腐蚀电位最高,腐蚀电流密度最小;而裸钢片腐蚀电位最小,腐蚀电流密度最大。  相似文献   

15.
以十二烷基硫酸钠(SDS)为乳化剂和掺杂剂,采用化学氧化聚合法合成了一种稳定的聚苯胺(PANI)乳液,该乳液与合成的磷化含氟丙烯酸酯(P-FAc)乳液以不同的比例制备复合乳胶涂层。采用傅里叶变换红外光谱仪对合成的PANI和P-FAc进行了结构表征;通过接触角、附着力、极化曲线、开路电位和电化学阻抗谱测试了复合涂层对Q235钢的防腐蚀性能;通过扫描电子显微镜观察了揭掉PANI/P-FAc复合涂层后的Q235钢表面形貌。结果表明:当PANI乳液与P-FAc乳液的质量比为1∶1时,复合涂层的性能最佳,其腐蚀电流密度仅为1.09×10~(-6)A/cm~2,平衡电位为-0.55 V,阻抗为10~(4.3)Ω·cm~2。  相似文献   

16.
先采用改进的Hummers法制备氧化石墨烯(GO),并使用N?(β?氨乙基)?γ?氨丙基三甲氧基硅烷(KH792)对其改性而得到改性石墨烯(KH792GO),再采用化学氧化法将苯胺直接聚合到KH792GO表面,制备出了分散性优异的改性石墨烯接枝聚苯胺(KH792GO@PANI).将KH792GO@PANI作为功能填料加...  相似文献   

17.
张锋  刘景军  郭铭  李效玉 《涂料工业》2007,37(12):14-16
制备了新型环氧富锌、环氧铁红、环氧云铁3种有机涂层材料。在此基础上,采用交流阻抗技术,对各种环氧涂层在盐雾前后进行了阻抗谱测定,并研究了涂层在盐雾环境中的失效机理。结果表明:3种涂层材料在盐雾实验后,阻抗圆直径均大幅减小,涂层耐腐蚀性能较盐雾前降低。盐雾实验后各涂层的耐腐蚀性能由强到弱依次是环氧云铁、环氧铁红、环氧富锌。通过对盐雾实验前后涂层阻抗谱的分析,比较了几种涂层材料的性能,提出了可能的腐蚀破坏机制。  相似文献   

18.
用双子表面活性剂(GS)通过静电作用对氧化石墨烯(GO)进行插层改性制备了改性氧化石墨烯(GSGO),再以苯胺(An)为单体,过硫酸铵(APS)为引发剂,通过原位聚合法制备了GSGO/PANI复合材料。最后利用GSGO/PANI与水性醇酸树脂(WAR)共混得到了GSGO/PANI/WAR防腐涂层。采用FTIR,Raman,XRD和SEM等测试手段对GSGO和复合材料的形貌、结构进行了表征,结果表明,GS插入到GO的片层中,使得GSGO的层间距增大,且棒状的聚苯胺分散在GO的片层中,形成片状插层结构。动电位极化和电化学阻抗谱测试表明,GSGO/PANI/WAR 复合涂层比纯WAR涂层具有更高的耐腐蚀性能。当复合涂层中w(GSGO)=10% 时,涂层的耐腐蚀性能最好。腐蚀电流密度从9.82?10-6A/cm2减小至1.08?10-6A/cm2,腐蚀电从-0.56V增加到-0.28V,|Z|值可达到5.25?106 ohm.cm2。  相似文献   

19.
分别采用直接混合氧化法和界面聚合法在四种不同的无机酸体系中制备了聚苯胺纳米纤维。扫描电镜表征发现采用直接混合氧化法可以得到高品质的聚苯胺纳米纤维,且在硫酸体系中可以得到直径均匀,长度达几个微米的优异的纤维形貌;通过红外光谱和紫外光谱对聚苯胺产物进行结构表征显示所得产物为掺杂态聚苯胺。进一步,选择硫酸掺杂的聚苯胺与环氧树脂共混制备了复合涂层,电化学阻抗谱研究发现,聚苯胺的加入提高了环氧涂层对Q235钢的初始屏蔽保护效果,但浸泡后,保护效果迅速下降。  相似文献   

20.
以盐酸为掺杂剂、过硫酸铵为氧化剂、咪唑类离子液体为稳定剂,采用化学氧化聚合法合成了导电聚苯胺(PANI)颗粒,将其分散到水性环氧树脂(ER)中制成聚苯胺水性环氧防腐涂层,研究了聚苯胺颗粒对涂层防腐性能和机械性能的影响。结果表明,添加聚苯胺显著提高了水性环氧涂层的阻隔性能,信号频率f=0.01 Hz时,PANI/ER涂层的阻抗(|Z|f=0.01Hz)均高于纯ER涂层。添加5.0wt% PANI时ER涂层阻隔性能最好,浸泡0~168 h时|Z|f=0.01Hz稳定在约8.0×108 Ω?cm2,浸泡168 h后|Z|f=0.01Hz=7.5×108 Ω?cm2,远高于ER和其它PANI/ER体系。中性盐雾实验结果表明,聚苯胺赋予了涂层钝化腐蚀的能力,显著提高了涂层的防腐性能,且其添加量越高,防腐性能越好。弯曲和冲击实验结果表明,涂层的机械性能随聚苯胺含量增加先上升后降低,当聚苯胺添加量不超过5.0wt%时,涂层的机械性能优异,附着力和韧性均较好;PANI添加量增至7.0wt%时,ER涂层的脆性明显变大,机械性能下降。聚苯胺在水性环氧体系中的最宜添加量为5.0wt%,此时涂层的机械性能良好,综合防腐性能最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号