首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This investigation presents the assessment of ambient air quality with respect to suspended particulate matter (SPM), sulphur dioxide (SO2) and oxides of nitrogen (NOX) at four sites (RGC, SRS, BBC and BCC) in the Raniganj-Asansol area in West Bengal, India. Ambient air was monitored with a sampling frequency of twenty four hours (3 × 8 hours) at each site on every alternate day (3 days a week) covering a period of one year. A total of 429 samples were collected from RGC, 429 from SRS and 435 each from the BBC and BCC sites. Meteorological parameters such as temperature, relative humidity, wind-speed and wind-direction were also recorded simultaneously during the sampling period. Monthly and seasonal variation of these pollutants have been observed and recorded. The annual average and range values have also been calculated. Results of the investigation indicates that the 95th percentile values of SPM levels exceed the limits (200 g m-3) at RGC, SRS and BBC sites and is within the limit of 500 g m-3 at the BCC sites. The 95th percentile values of SO2 levels did not exceed the reference level at any of the monitoring stations. The 95th percentile values of NOX are found to be exceeding the limit (80 g m-3) at RGC, SRS and BBC sites but is within the prescribed limit of 120 g m-3 at the BCC site. Further, it has been observed that the concentrations of the pollutants are high in winter in comparison to the summer or the monsoon seasons. Results of the investigation indicates that industrial activities, indiscriminate open air burning of coal by the local inhabitants for cooking as well as coking purposes, vehicular traffic, etc. are responsible for the high concentration of pollutants in this area.  相似文献   

2.
Considering the mounting evidences of the effects of air pollution on health, the present study was undertaken to assess the ambient air quality status in the fast growing urban centres of Haryana state, India. The samples were collected for total suspended particulate matter (TSPM), respirable suspended particulate matter (PM10), sulfur dioxide (SO2), and oxides of nitrogen (NO2) during different seasons from 8 districts of Haryana during January, 1999 to September, 2000. The four types of sampling sites with different anthropogenic activities i.e. residential, sensitive, commercial and industrial were identified in each city. The ambient air concentration of TSPM and PM10 observed was well above the prescribed standards at almost all the sites. The average ambient air concentrations of SO2 and NO2 were found below the permissible limits at all the centres. Comparatively higher concentration of SO2 was observed during winter seasons, which seems to be related with the enhanced combustion of fuel for space heating and relatively stable atmospheric conditions. Air Quality Index (AQI) prepared for these cities shows that residential, sensitive and commercial areas were moderately to severely polluted which is a cause of concern for the residents of these cities. The high levels of TSPM and SO2 especially in winter are of major health concern because of their synergistic action. The data from Hisar city reveals a significant increase in the total number of hospital visits/admissions of the patients with acute respiratory diseases during winter season when the level of air pollutants was high.  相似文献   

3.
为研究北京地区冬季PM_(2.5)载带的水溶性无机离子组分污染特征,2013年1月在中国环境科学研究院内采用在线离子色谱(URG-9000B,AIM-IC)对PM_(2.5)中水溶性无机离子(SO_4~(2-)、NO_3~-、Cl~-、NH_4~+、Na~+、K~+、Mg~(2+)、Ca~(2+))进行监测与分析。结果表明,采样期间总水溶性无机离子(TWSI)浓度为61.0μg/m~3,其中二次无机离子SO_4~(2-)、NO_3~-、NH_4~+(SNA)占比达72.3%,在PM_(2.5)中占比为40.29%,表明北京市PM_(2.5)二次污染严重。重污染天[NO_3~-]/[SO_4~(2-)]表明,固定源污染较移动源更为显著。三元相图表明,在空气质量为优的情况下,NH_4~+(在SNA中占比为30.3%~65.5%,下同)主要以NH_4NO_3的形式存在,较少比例以(NH_4)_2SO_4存在;严重污染时,NH_4~+(47.3%~77.9%)主要以(NH_4)_2SO_4形式存在,其次以NH_4NO_3的形式存在,其余的NH_4~+以NH_4Cl的形式存在。[NO_3~-]/[SO_4~(2-)]日变化表明,早、晚机动车高峰影响北京重污染发生。  相似文献   

4.
Roadside PM10 has been monitored by Partisol® at three sitesin Sunderland between August 1997 and February 1998. The sites chosen were an inner city kerbside site; a roadside site adjacentto a dual carriageway on the outskirts of Sunderland with an openaspect; and a rural site.The results indicate that there is a seasonal variation in the relationship between the sites in terms of monitored PM10.In the winter there is a poor correlation between the sites whereas in the summer significant correlations are obtained. Of the sites monitored PM10 is consistently highest at the inner city roadside site. During the summer, exceedances of theU.K. 50 g m-3 standard (DETR, 2000) are associated with conditions suitable for the build-up of photochemical pollutionhowever during the winter period exceedances are recorded duringa variety of weather conditions.At the dual carriageway site PM2.5 has also been recorded and contributions to measured PM10 are 77% in summer and68% in winter. The results illustrate a number of inconsistencies between this study utilising the Partisol® andothers reporting results where PM10 has been monitored by TEOM®.  相似文献   

5.
于非采暖季和采暖季分别采集某石化化工行业聚集城市中心城区室内外PM_(2.5)样品,采用高效液相色谱法分析PM_(2.5)上载带的16种PAHs,对其分布特征、来源以及室外PAHs污染对室内污染的贡献进行了初步探讨。结果表明,研究区域非采暖季和采暖季室外PM_(2.5)中ΣPAHs浓度日均值分别为36.3、294 ng/m~3,室内PM_(2.5)中ΣPAHs浓度分别为14.8、84.6 ng/m~3,均以4、5环PAHs为主;室内PAHs主要来自室外渗透污染,但同时明显存在室内排放源贡献;PAHs来源分析进一步证实研究区域PAHs主要来自煤炭、石油等不完全燃烧,采暖季煤炭燃烧源贡献更突出。  相似文献   

6.
The concentrations of criteria air pollutants such as CO, NOx (NO + NO2), SO2 and PM were measured in the period of May 2001 and April 2003 in the city of Bursa, Turkey. The average concentrations for this period were 1115±1600 μg/m3, 29±50 μg/m3, 51±24 μg/m3, 79±65 μg/m3, 40±35 μg/m3, 98±220 μg/m3, for CO, NO, NO2, NOx, SO2 and PM, respectively. Temporal changes in concentrations were analyzed using meteorological factors. Correlations among pollutant concentrations and meteorological parameters showed weak relations nearly in all data. Lower concentrations were observed in the summer months while higher concentrations were measured in the winter months. The increase in winter concentrations was probably due to residential heating. Pollutants were associated with each other in order to have information about their origin. NOx/SO2 ratio was also examined to bring out the source origin contributing on air pollution (i.e., traffic or stationary).  相似文献   

7.
An ambient air quality study was undertaken in two cities (Pamplona and Alsasua) of the Province of Navarre in northern Spain from July 2001 to June 2004. The data were obtained from two urban monitoring sites. At both monitoring sites, ambient levels of ozone, NOx, and SO2 were measured. Simultaneously with levels of PM10 measured at Alsasua (using a laser particle counter), PM10 levels were also determined at Pamplona (using a beta attenuation monitor). Mean annual PM10 concentrations in Pamplona and Alsasua reached 30 and 28 μg m−3, respectively. These concentrations are typical for urban background sites in Northern Spain. By using meteorological information and back trajectories, it was found that the number of exceedances of the daily PM10 limit as well as the PM10 temporal variation was highly influenced by air masses from North Africa. Although North African transport was observed on only 9% of the days, it contributed the highest observed PM10 levels. Transport from the Atlantic Ocean was observed on 68% of the days; transport from Europe on 13%; low transport and local influences on 7%; and transport from the Mediterranean region on 3% of the days. The mean O3 concentrations were 45 and 55 μg m−3 in Pamplona and Alsasua, respectively, which were above the values reported for the main Spanish cities. The mean NO and NO2 levels were very similar in both sites (12 and 26 μg m−3, respectively). Mean SO2 levels were 8 μg m−3 in Pamplona and 5 μg m−3 in Alsasua. Hourly levels of PM10, NO and NO2 showed similar variations with the typically two coincident maximums during traffic rush hours demonstrating a major anthropogenic origin of PM10, in spite of the sporadic dust outbreaks.  相似文献   

8.
Ambient concentrations of PM2.5 and PM10 are of concern with respect to effects on human health and environment. Increased levels of mortality and morbidity have been associated with respirable particulate air pollution. In India, it is not yet mandatory to monitor PM2.5 levels therefore very limited information is available on PM2.5 levels. To understand the fine particle pollution and also correlate with PM10 which are monitored regularly in compliance with ambient air quality standards. This study was carried out to monitor PM2.5, PM10, and NO2 for about one year in a residential cum commercial area of Mumbai city with a view to understand their correlation. The average PM2.5 concentration at ambient and Kerbsite was 43 and 69 μg/m3. The correlation coefficients between PM2.5 and PM10 at ambient and Kerbsite were 0.83 and 0.85 respectively thus indicating that most of the PM2.5 and PM10 are from similar sources. TSP, PM10 levels exceeded Central Pollution Control Board(CPCB) standard during winter season. PM2.5 levels also exceeded 24 hourly average USEPA standard during winter season indicating unhealthy air quality.  相似文献   

9.
2001年~2008年及奥运会期间天津市大气污染特征分析   总被引:1,自引:1,他引:0  
根据天津市大气质量监测数据,对2001年~2008年及奥运会期间天津市大气污染特征和主要大气污染物的变化规律进行了分析。结果表明,2001年~2008年天津市的PM10、SO2和NO2污染总体呈下降趋势,但质量浓度仍相对较高。2008年8月奥运会期间天津市PM10和SO2质量浓度达到国家空气质量二级标准,NO2质量浓度达到国家空气质量一级标准,空气质量良好。天津市PM10污染相对稳定,SO2和NO2的污染分布呈现明显的季节性,时间上表现为冬强夏弱。气象条件对污染物浓度影响明显,沙尘、大雾等天气可使污染物浓度急剧升高。  相似文献   

10.
The relationship between indoor and outdoor particulate air pollution was investigated at an urban background site on the Payambar Azam Campus of Mazandaran University of Medical Sciences in Sari, Northern Iran. The concentration of particulate matter sized with a diameter less than 1 μm (PM1.0), 2.5 μm (PM2.5), and 10 μm (PM10) was evaluated at 5 outdoor and 12 indoor locations. Indoor sites included classrooms, corridors, and office sites in four university buildings. Outdoor PM concentrations were characterized at five locations around the university campus. Indoor and outdoor PM measurements (1-min resolution) were conducted in parallel during weekday mornings and afternoons. No difference found between indoor PM10 (50.1 ± 32.1 μg/m3) and outdoor PM10 concentrations (46.5 ± 26.0 μg/m3), indoor PM2.5 (22.6 ± 17.4 μg/m3) and outdoor PM2.5 concentration (22.2 ± 15.4 μg/m3), or indoor PM1.0 (14.5 ± 13.4 μg/m3) and outdoor mean PM1.0 concentrations (14.2 ± 12.3 μg/m3). Despite these similar concentrations, no correlations were found between outdoor and indoor PM levels. The present findings are not only of importance for the potential health effects of particulate air pollution on people who spend their daytime over a period of several hours in closed and confined spaces located at a university campus but also can inform regulatory about the improvement of indoor air quality, especially in developing countries.  相似文献   

11.
An atmospheric pollution survey was carried out at 13 sites in Karachi, Pakistan, simultaneously from 0600 h to 2100 h for 15 consecutive days in May 1990 which also included meteorological measurements. The monitoring sites were included along the prevailing wind patterns in Karachi. Carbon monoxide levels in the ambient air were found to reach 9–10 ppm along the busy urban streets whereas CO2 level exceeded 370 ppm in these areas. Our survey indicates that NO2 levels were exceeding U.S. ambient air quality standards. Maxmum NO2 concentrations were observed (0.3–0.5 ppm) during the daytime from 0600 h to 2100 h. The surface ozone maximum around noon at the inland sites reached the levels of 40 ppb and 50 ppb respectively compared to upwind coastal Sites 1 level of 25 ppb. The Pb concentrations were approximately 3- to 7-fold higher than average, which corresponded well to urban air. Fossil fuel SO4 (excess) and NO3 were apportionally based on the assumption that these two anions were present as (NH4)2SO4, and NH4NO3 in the aerosols. In the eastern part of the city atmospheric sulphate (SO4) shows the combustion of coal as its source from the vicinity and downwind of a steel manufacturing plant.  相似文献   

12.
环境空气质量新标准对珠三角区域站空气质量评价的影响   总被引:4,自引:4,他引:0  
利用粤港珠三角区域空气质量监控网中天湖、金果湾与万顷沙3个区域站2010年全年SO2、NO2、PM10、O3、PM2.5与CO自动监测的数据,分析了实施环境空气质量新标准(GB 3095—2012)对这3个子站空气质量评价的影响。研究发现,若采用新标准,万顷沙的NO2、PM10和PM2.5年均浓度将不同程度超标。这3个子站空气质量达标率下降7~28个百分点,空气污染指数从91%~99%下降至63%~91%;O3的引入是导致空气质量达标率下降的最主要的原因;O3将取代PM10成为最主要的首要污染物,出现频率大于50%,且O3(8 h)平均浓度的影响大于O3 (1 h)浓度的影响。PM2.5的纳入也是导致空气质量达标率下降的重要因素,其超标率为3%(金果湾)~16%(万顷沙)。NO2标准的收严未对天湖与金果湾空气质量评价造成影响,但导致万顷沙NO2的超标率从2%上升至10%,且NO2作为首要污染物的比例达24%。  相似文献   

13.
In the present study, we investigate the variation of NO x (NO + NO2) and O3 concentrations and the relation between the extreme events (episodes) of NO x and O3 concentrations and the relevant meteorological conditions in the urban atmosphere of the Athens basin. Hourly data of NO, NO2 and O3 concentrations from 10 representative monitoring sites located in the Athens basin were used, covering the 10-year time period from 1994 to 2003. The results of our analysis show that the concentrations of air pollutants differ significantly from one monitoring site to another, due to the location and proximity of each station to the emission sources. For each site, there are also significant differences in NO x and O3 concentrations from day to day, as well as from month to month and/or from season to season. The annual and seasonal variations show higher NO values in winter and lower in summer. On the contrary, NO2 and O3 values are higher in summer (photochemical production of O3) and lower in winter. These differences are attributed, to a large extent, to the prevailing synoptic and meteorological conditions, the most important between them being the wind direction and speed as well as the atmospheric pressure. Our analysis of the identified 179 extreme NO x air pollution events shows that most of them took place under anticyclonic conditions, associated with calm or weak winds (speed <2.5 ms−1) of mostly southern to southwestern directions, as well as with low air temperatures and intense stable surface atmospheric conditions. There exists a significant decreasing tendency in NO x air pollution episodic events over the 10-year study period, resulting in very few to none events in the period from 2000 to 2003. As far as it concerns the extreme O3 concentrations, 34 air pollution events were identified, occurring under high air temperatures, variable weak winds and intense solar irradiation. The trends of O3 concentrations are stronger in suburban sites than in urban ones.  相似文献   

14.
A workshop on analytical quality control (AQC) of ambient air quality measurement methods for nitrogen dioxide (NO2) and sulphur dioxide (SO2) was conducted by Central Pollution Control Board (CPCB) for officials involved in National Ambient Air Quality Monitoring (NAAQM) in India. Concentrations of NO2 and SO2 were generated by dynamic dilution system under laboratory conditions at low and high levels and measured using static dilution system and wet chemical methods laid down by CPCB under section 16(2)(h) of the air act 1981. CPCB provided the measured values as reference values for comparing the means obtained by the officials participated from thirteen organizations. A tolerance limit of ±15% of the reference values was specified to accept the results. Generated concentrations, which were unknown to the participants, were measured using gaseous sampling assembly (Envirotech APM 411, New Delhi, India), and wet chemical methods laid down by CPCB i.e. the same methodology which is used by the organizations to generate the data of NO2 and SO2 in ambient air. Simultaneously, concentrations were checked by CPCB using automatic analyzers as a check on reference concentration. It is observed that results of automatic analyzers for NO2 and SO2 were within a tolerance of ±5% with %RSD below 3. On the other hand, results of most of the participants showed variability in the measurements with %RSD ranging between ±0.8 and ±88.6 and exceedences of means from the tolerance limit with bias ranging between 1.4 and −59%. To check the cause of high variability in the measurements obtained under identical conditions, duplicate sampling was performed by one of the participants for SO2 at low concentration level. In this study, results of wet chemical methods, automatic analyzers and results of duplicate sampling are analysed statistically to assess the cause of high variability in the measurements. Analysis of t-test and analysis of variance (ANOVA) showed highly significant results for NO2 and SO2 at high concentration levels (α 0.05) and for SO2 at both the levels (α 0.01) respectively indicating some bias is existing either in the sampling or in analytical technique. Duplicate sampling performed to check precision in parallel measurements showed high %RSD indicating the presence of systematic error in sampling technique as the same calibration factor (CF) was used to measure the concentration of duplicate samples. Statistical analysis of flow rates of duplicate sampling showed that the sampling assembly could not maintain the constant flow rate within the ±10% with that measured at the start of the sampling. This resulted in high %RSD and deviation from the reference values for the results of most of the participants, even after accepting ±15% tolerance limit. There is a need to improve and evaluate this gaseous sample collection device under laboratory conditions to generate reliable database of NO2 and SO2 in ambient air.  相似文献   

15.
The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium–low level of bacterial contamination (50–500 CFU/m3) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.  相似文献   

16.
In this study, the relationship between inhalable particulate (PM10), fine particulate (PM2.5), coarse particles (PM2.5 – 10) and meteorological parameters such as temperature, relative humidity, solar radiation, wind speed were statistically analyzed and modelled for urban area of Kolkata during winter months of 2003–2004. Ambient air quality was monitored with a sampling frequency of twenty-four hours at three monitoring sites located near traffic intersections and in an industrial area. The monitoring sites were located 3–5 m above ground near highly trafficked and congested areas. The 24 h average PM10 and PM2.5 samples were collected using Thermo-Andersen high volume samplers and exposed filter papers were extracted and analysed for benzene soluble organic fraction. The ratios between PM2.5 and PM10 were found to be in the range of 0.6 to 0.92 and the highest ratio was found in the most polluted urban site. Statistical analysis has shown a strong positive correlation between PM10 and PM2.5 and inverse correlation was observed between particulate matter (PM10 and PM2.5) and wind speed. Statistical analysis of air quality data shows that PM10 and PM2.5 are showing poor correlation with temperature, relative humidity and solar radiation. Regression equations for PM10 and PM2.5 and meteorological parameters were developed. The organic fraction of particulate matter soluble in benzene is an indication of poly aromatic hydrocarbon (PAH) concentration present in particulate matter. The relationship between the benzene soluble organic fraction (BSOF) of inhalable particulate (PM10) and fine particulate (PM2.5) were analysed for urban area of Kolkata. Significant positive correlation was observed between benzene soluble organic fraction of PM10 (BSM10) and benzene soluble organic fraction of PM2.5 (BSM2.5). Regression equations for BSM10 and BSM2.5 were developed.  相似文献   

17.
Sulphur dioxide (SO2) is one of the main atmospheric pollutants in central Taiwan. This article analyses the SO2 concentration seasonal variations and spatial distribution using data obtained from ten air quality monitoring stations and the Taiwan Weather Bureau. It reveals that SO2 concentration is high in winter and low in summer and that high concentration centers are located south of the Taichung coal-fired power plant, the main source of SO2 emissions in the region.The location of high concentration centers changeswith different prevailing winds. SO2 variations due towind direction are not unique. During short periods,when meteorological conditions are constant, variationin the pollution sources cause variations in thespatial distribution. This has been deduced byappreciation of Intervention analysis to time seriesof hourly data.  相似文献   

18.
The reduction of SO2 by ammonia gas additionduring staged combustion of bituminous coal has beenstudied in a 2 m high fluidized bed combustor of 30 cmstatic bed height and a freeboard height of 100 cm.The coal was introduced to the combustor at 42 cmabove the distributor and the ammonia gas was injectedat 52 cm above the distributor by an uncooledstainless steel injector. Experiments were carriedout to investigate effects of ammonia gas injection onSO2 emissions of (i) air staged levels, (ii) excess air levels, (iii) primary air factor, PAF(ratio of primary to stoichiometric air), (iv) NH3:SO2 molar ratio, and (v) fluidizingvelocity. Experiments were carried out under a newtechnique of air staging called Pseudo-stagedCombustion, maintaining the excess air level andfluidizing velocity between 17 and 70% and between0.7 and 2.0 m sec-1, respectively. A maximum reduction of92% was obtained at 37% excess air, at NH3:SO2 molar ratio of 5.5. The effective NH3:SO2 molar ratio was found to be between 3.0 and5.5, which is true for all staging and excess air levels.A greater removal of SO2 with NH3 injectionduring staged combustion is probably due to this newstaging technique. The Pseudo-staging reducestemperature through the freeboard and flue for theoccurance of as NH3 + SO2 reactions. Thesereactions are reported to be low temperaturereactions. The NH3 carry over was less than 83 ppm for all operating conditions. The present studydemonstrates that staged combustion coupled withammonia injection can reduce SO2 emissions.  相似文献   

19.
This study monitored atmospheric pollutants during high wind speed (> 7 m s−1) at two sampling sites: Taichung Harbor (TH) and Wuci traffic (WT) during March 2004 to January 2005 in central Taiwan. The correlation coefficient (R 2) between TSP, PM2.5, PM2.5−10 particle concentration vs. wind speed at the TH and WT sampling site during high wind speed (< 7 m s−1) were also displayed in this study. In addition, the correlation coefficients between TSP, PM2.5 and PM2.5−10 of ionic species vs. high wind speed were also observed. The results indicated that the correlation coefficient order was TSP > PM2.5−10 > PM2.5 for particle at both sampling sites near Taiwan strait. In addition, the concentration of Cl, NO3 , SO4 2−, NH4 +, Mg2+, Ca2+ and Na+ were also analyzed in this study.  相似文献   

20.
灰霾期间武汉城市区域大气污染物的理化特征   总被引:2,自引:2,他引:0  
利用湖北省大气复合污染自动监测站2013年的全年监测数据,分析了灰霾期间武汉城市区域大气污染物的理化特征。霾日主要出现在春季、秋季和冬季。霾日与非霾日大气污染物质量浓度和气象参数的对比分析结果显示:高湿度、静风是武汉城市区域霾日的重要气象特征;PM1、PM_(2.5)、PM_(10)、NO_2、CO、NH3的质量浓度,SOR、NOR值以及PM_(2.5)中的二次无机离子(SO2-4、NO-3、NH+4)和部分元素(Pb、Se、Cd、Zn、K)的质量浓度均在霾日明显高于非霾日,而霾日SO2质量浓度仅在冬季略高于非霾日。选取2013年1月的连续灰霾日进行相关性分析,结果表明:污染组分主要来自当地排放(包括直接排放和二次形成),并受当地气象条件影响。此次灰霾过程中PM_(2.5)中的硫酸盐和硝酸盐主要来自气相反应,气态NO_2主要生成了气态HNO_3,而不是HNO_2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号