首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采用溶胶-凝胶法制备的纳米SiO_2和氧化降解的木质素磺酸钙共同改性酚醛泡沫。并采用热重分析仪、电子万能试验机、扫描电镜等方法对泡沫材料进行了表征。测试结果表明,改性泡沫的热稳定性和韧性得到了提高,其中质量分数为0.5%的纳米SiO_2-木质素酚醛泡沫(LPF-0.5)性能最佳。热重分析泡沫LPF-0.5的最大速率降解温度为330℃,残炭率为54%,比纯泡沫(PPF)的145℃和49%,分别提高185℃和10%。力学性能测试表明泡沫LPF-0.5的压缩强度(0.33MPa)、弯曲强度(0.53MPa)和弯曲模量(16.01MPa)比PPF(0.27MPa、0.31MPa、10.54MPa)分别提高了23%、71%、52%。易碎性能表征泡沫LPF-0.5的粉化率降低了34%,韧性明显提高。同时扫描电镜显示泡沫LPF-0.5具有最优的泡体规整度和泡孔均匀度。  相似文献   

2.
腰果壳油改性酚醛纤维的制备及性能研究   总被引:1,自引:0,他引:1  
以腰果壳油改性酚醛树脂为原料,采用熔融纺丝法制备出腰果壳油改性酚醛纤维。通过力学性能测试及TG、SEM、FT-IR等分析表征手段,对改性后纤维的结构和性能进行了研究。结果表明:改性后的纤维与普通酚醛纤维一样,其表面光滑,截面结构均匀、致密。通过合成、固化过程中的缩聚反应,腰果壳油的柔性脂肪长链引入了酚醛体系中,因此,腰果壳油改性酚醛属化学改性。与纯酚醛纤维相比,改性后的纤维断裂伸长有了明显的提高,韧性得到了增加;与此同时,残炭率和热稳定性仅有轻微的降低。  相似文献   

3.
以双酚A型环氧树脂E51为基体,苯并噁嗪树脂为改性剂,4,4-二氨基二苯甲烷为固化剂,并加入少量无机填料,制备了苯并噁嗪树脂改性环氧树脂胶黏剂,研究了其耐热性能与阻燃性能。结果表明:苯并噁嗪树脂改性的环氧树脂胶黏剂耐热性能和阻燃性能较好,在氮气气氛下质量损失10%时的温度由390.75℃提高到401.12℃,800℃时的残炭率为21.988%(w),175℃的拉伸剪切强度达到19.4 MPa,极限氧指数达到31.6%。  相似文献   

4.
采用热压成型法制备了苎麻纤维增强酚醛树脂复合材料(RFRP),通过热机械分析、热重分析及扫描电镜研究了固化温度分别为130,155及180℃时RFRP性能的变化。结果表明,随着固化温度的升高,酚醛树脂固化更充分,130℃下固化2 h的RFRP的储能模量在0~180℃测试区间下降了21 MPa,155℃和180℃下固化产物的储能模量变化不大。苎麻纤维的加入提高了基体树脂的储能模量,155℃下固化2 h的RFRP的储能模量达到最高为37.33 MPa。SEM观察可见纤维与树脂结合紧密。随着固化温度的升高复合材料的残炭率提高,700℃时的残炭率最高可达44.13%,材料的热稳定性提高。  相似文献   

5.
郭睿  李平安  赵云飞 《化工进展》2022,41(8):4473-4480
以双酚A多聚甲醛酚醛树脂(BPA-PA酚醛树脂)、二甲基二甲氧基硅烷和环氧氯丙烷为原料,通过酯交换反应和亲核取代反应得到硅改性BPA-PA酚醛环氧树脂。采用傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)分析进行结构确证。结合非等温DSC、T-β外推直线和FTIR分析研究了最佳固化工艺条件。探讨了不同硅烷添加量对硅改性BPA-PA酚醛环氧树脂性能的影响。最后以硅改性BPA-PA酚醛环氧树脂为基体树脂,加以导电填料和助剂,制备出中温型导电胶。对导电胶进行拉伸剪切强度、体积电阻率和热重测试分析,结果显示:自制硅改性BPA-PA酚醛环氧树脂导电胶拉伸剪切强度达到20.18MPa、体积电阻率达到7.44×10-4Ω·cm,残炭量达到68.89%。相对市售E-51环氧树脂所制导电胶,自制硅改性BPA-PA酚醛环氧树脂导电胶拉伸剪切强度提高5.73MPa,体积电阻率降低3.86×10-4Ω·cm,残炭量提高7.49%。  相似文献   

6.
纤维增强酚醛树脂基复合材料具有易成型、加工周期短和隔热性能好等优点,可用作烧蚀型热防护材料。本文对热熔胶膜法制备的高硅氧/硅硼改性酚醛预浸料及其复合材料进行了研究。硅硼改性酚醛树脂具有优异的热稳定性,氮气气氛下,800℃残碳率高达75.3%。高硅氧/硅硼改性酚醛预浸料的百分流动度、挥发份和树脂含量分别为21.3%、5.7%和40.2%。对比溶液法制备预浸料成型的层压板,采用热熔胶膜法制备的高硅氧/硅硼改性酚醛复合材料层压板的弯曲强度和层间剪切强度分别提高了56.2%和22.1%。氧乙炔线烧蚀率和质量烧蚀率分别为0.0498mm/s和0.0506g/s。高硅氧/硅硼改性酚醛复合材料优异的耐烧蚀性能有助于降低热防护材料的厚度,减轻火箭、导弹等的总体质量,对提高武器装备的性能具有重要的意义。  相似文献   

7.
以γ-氨丙基三乙氧基硅烷(APTES)对纳米SiO_2进行表面改性,以酚醛预聚体、环氧氯丙烷(ECH)、二乙醇胺(DEA)等为主要原料并通过预聚体法合成SiO_2/水性酚醛环氧树脂(WEPN),与三乙烯四胺(TETA)固化得到复合涂膜。通过FT-IR、SEM、TEM、TGA、力学性能测试等对产物的结构与性能进行表征。结果表明,APTES对纳米SiO_2改性成功,改性后亲油效果增加,团聚明显改善,APTES的最佳质量分数为40%;纳米SiO_2通过化学键接入WEPN中,分散良好,SiO_2的加入有效提高了WEPN的热稳定性、韧性及耐酸碱性等应用性能。当纳米SiO_2质量分数为2%时,涂膜的综合性能最好,拉伸强度由67.15 MPa增至77.48 MPa,耐冲击性达到50 cm,断裂伸长率由3.55%增至4.32%,水接触角增至115°,涂膜(10%失重)分解温度从298.5℃提高到350.1℃,残留量由19%增至29%。  相似文献   

8.
在碱性条件下,以腰果酚部分代替苯酚与甲醛反应制得腰果酚改性酚醛树脂,并以该树脂为原料制备腰果酚改性酚醛树脂泡沫。结果表明:当苯酚/腰果酚物质的量比为9/1、缩聚反应温度90℃、催化剂加入量为苯酚和腰果酚总质量4%时,所得树脂黏度为25 Pa·s,符合最佳发泡黏度范围。当苯酚/腰果酚物质的量比为9/1时,改性树脂在400℃时的残炭量(94.6%)要比未改性树脂的残炭量高7.1%,压缩强度由改性前的0.08 MPa提高到改性后的0.14 MPa。扫描电镜结果表明:在相同条件下,改性后的酚醛树脂泡沫泡孔更为均匀。  相似文献   

9.
为提高酚醛泡沫材料的耐高温性能和高温裂解前后的力学性能,通过物理共混法在发泡酚醛树脂中添加二硼化钛(TiB_2)无机填料制备了酚醛/TiB_2泡沫复合材料。研究了泡沫复合材料的固化过程和在1 000℃下裂解前后的微观结构,以及不同的TiB_2颗粒含量对泡沫复合材料的热物理性能、裂解前后力学性能的影响。结果表明,添加的TiB_2颗粒并不能被引入到酚醛树脂的分子链中,但是能够与酚醛树脂裂解释放出的含氧气体发生氧化还原反应,将裂解气体中的C和O元素吸收并转化为无定形碳和TiO_2等固相产物,从而提高了酚醛泡沫的残炭率和裂解后的力学性能。随着TiB_2含量的增加,泡沫复合材料的残炭率以及裂解前后的表观密度、比压缩强度和比弯曲强度均呈上升趋势,其中裂解后的强度上升更为明显。当TiB_2用量为30份时,酚醛泡沫复合材料在1 000℃下裂解产物的残炭率、比压缩强度和比弯曲强度分别比纯酚醛泡沫材料提高了39.2%,76.5%和43.9%。  相似文献   

10.
针对酚醛泡沫塑料脆性大和强度低的缺点,采用双氰胺作为改性剂,对酚醛树脂及其泡沫塑料进行了改性研究,并将改性前后两种泡沫塑料的性能进行了对比。采用傅立叶变换红外光谱对酚醛树脂进行了结构表征,通过粉化率、冲击强度和压缩强度测试分析了改性酚醛泡沫塑料的脆性和力学性能,通过热失重分析了改性酚醛泡沫塑料的热稳定性,并采用极限氧指数仪测定了改性酚醛泡沫塑料的阻燃性能。结果显示,当加入的双氰胺用量为苯酚质量的3%时,改性酚醛泡沫塑料的综合性能最好,其压缩强度达到0.046 MPa,冲击强度达到3.36 k J/m2,粉化率低至2.13%,极限氧指数达到38.5%。相对于纯酚醛泡沫塑料,双氰胺改性酚醛泡沫塑料的力学性能有所提升,脆性明显改善。在热稳定性方面,纯酚醛泡沫塑料在340℃时已明显失重,而3%双氰胺改性酚醛泡沫塑料在370℃后才开始快速失重,热稳定性更好。随着双氰胺用量的增加,改性酚醛泡沫塑料的极限氧指数增大,阻燃性能有所提高。  相似文献   

11.
以3,3',4,4'-联苯四甲酸二酐和1,4-二氨基苯二胺共聚制备聚酰胺酸盐前驱体溶液,通过湿法纺丝,然后经过超临界二氧化碳干燥和热亚胺化处理制得纳米芳纶(ANFs)增强聚酰亚胺(PI)气凝胶纤维(简称PI/ANFs气凝胶纤维),研究了气凝胶纤维的结构与性能.结果表明:傅里叶变换红外光谱和X射线衍射光谱表征所制备的PI...  相似文献   

12.
采用有机硅改性剂通过共混法改性了热固性酚醛树脂。通过红外,热重分析以及力学性能测试研究了有机硅用量对酚醛树脂热性能和力学性能的影响。结果表明:加入的有机硅改性剂的质量分数为25%时,酚醛树脂的主体结构分解温度提高了36℃,分解速率降低了21%,最终残炭率增加了10.05%,并且拉伸强度由49.68 MPa提高到77.46 MPa,冲击强度由8.3 kJ/m2提高到11.89 kJ/m2。  相似文献   

13.
短切纤维增强改性磷酸盐水泥抗折性能研究   总被引:1,自引:0,他引:1  
分别采用短切碳纤维和短切玻璃纤维对磷酸盐水泥进行了增强改性研究.采用羧甲基纤维素溶液做分散剂使短切纤维在水泥基体中得到了很好的分散;通过凝结时间及抗折强度测试,研究了纤维种类与掺量对磷酸盐水泥性能的影响.结果表明,短切纤维的加入对磷酸盐水泥的凝结时间影响不明显;两种短切纤维的加入都使磷酸盐水泥的抗折强度显著提高,磷酸盐...  相似文献   

14.
合成了烯丙基线性酚醛树脂,研究了在加热和加热/催化剂条件下的固化特性,采用烯丙基化线性酚醛树脂与双马来酰亚胺反应形成共聚物,通过FTIR和DSC分别分析了树脂在无催化剂和磷酸三苯酯(TPP)催化条件下的固化和结构,研究结果表明:烯丙基化酚醛树脂,双马来酰亚胺改性烯丙基化酚醛树脂在加热条件下不需要固化剂可以实现加成固化。  相似文献   

15.
采用常压烧结方法在1 700℃保温2 h制备出AlN/20%(体积分数)h-BN复相陶瓷,对烧结后的样品分别采用A10铝溶胶和硅溶胶/酚醛树脂进行浸渍处理,随后在1 450℃氮气气氛下热处理2 h。对比研究了浸渍及热处理前后复相陶瓷的致密度、抗弯强度、Vickers硬度、微观结构和物相组成,并分析了复相陶瓷的强化机理。结果表明:A10铝溶胶浸渍处理后样品的抗弯强度和Vickers硬度略有提高;经过硅溶胶/酚醛树脂处理的样品抗弯强度和Vickers硬度大幅提高,抗弯强度和Vickers硬度分别从81.5MPa和1.99 GPa提高到130.1 MPa和3.58GPa;硅溶胶/酚醛树脂处理后的样品在孔隙界面处生成的碳化硅及氮氧化铝是样品抗弯强度和Vickers硬度显著提高的主要原因。  相似文献   

16.
王登武  王芳 《中国塑料》2015,29(11):61-65
采用化学镀的方法在碳纤维(CF)上镀一层银膜,然后采用搅拌混合的方法制备了酚醛树脂/镀银碳纤维(Ag-CF)导热复合材料,通过扫描电子显微镜(SEM)、X射线衍射仪(XRD)、X射线能量色散光谱仪(EDS)等方法对其结构和性能进行表征。结果表明,大量的银粒子均匀分布在CF表面;酚醛树脂/Ag-CF导热复合材料的导热系数、冲击强度和拉伸强度随着Ag-CF含量的增加而逐渐增加;Ag-CF的含量为7.0 %时,酚醛树脂/Ag-CF导热复合材料的综合性能最优,此时其导热系数为1.25 W/(m·K),冲击强度和弯曲强度分别为66.7 kJ/m2和139.2 MPa;残炭率为30 %时,添加量为7.0 %的复合材料对应温度为 500 ℃,高于纯酚醛树脂的 450 ℃。  相似文献   

17.
采用石灰乳法制备氢氧化镁阻燃剂,对混合碱用量、溶剂总量、水/醇比和反应时间进行考察,并采用三种典型的改性剂———磷酸三苯酯、双咪唑啉、双子磺酸钠对氢氧化镁阻燃剂进行改性。结果表明,Mg(OH)2的最佳制备条件为:氯化镁与混合碱的摩尔比为1∶2.2,溶剂的总量为2 100 mL,水/醇的体积比为4∶1,反应时间为30 min。采用晶须改性剂磷酸三苯酯时,温度在80℃,改性时间4 h,添加量2%(质量百分比)时,活化指数较好;采用双咪唑啉、双子磺酸钠时,温度在40℃,改性时间2 h,添加量4%(质量百分比)时,活化指数较好。  相似文献   

18.
采用木质素和糠醛改性普通甲阶酚醛树脂。运用正交实验法得到木质素糠醛改性甲阶酚醛树脂的最佳反应条件,通过IR,DSC,TG分析和压缩性能测试对产物的热性能和力学性能进行了研究。结果表明,在苯酚100g,木质素40g,甲醛116.54g,糠醛34.28g,反应温度85℃,反应时间3h,体系pH值9的条件下得到的改性甲阶酚醛树脂固含量70%~80%,黏度850~1000mPa.s(25℃),热分解温度为258℃,与普通甲阶酚醛树脂(263℃)相比,耐热性稍差。所制备的改性酚醛塑料的压缩强度为1.07MPa,比普通酚醛塑料(0.73MPa)高,木质素和糠醛的引入提高了泡沫塑料的韧性。  相似文献   

19.
廖庆玲  李轩科 《粘接》2012,(1):52-56
利用纳米粒子对镁碳砖生产用酚醛树脂粘合剂进行了改性。改性树脂常规指标符合镁碳砖结合剂的要求。FE-SEM照片可以看到球形和近球形的纳米颗粒,分散均匀且基本无团聚。制砖实验结果表明,以改性树脂为结合剂能有效地减小显气孔率,增大体积密度且明显提高砖的压缩强度。特别是以TEOS(正硅酸乙酯)和纳米炭黑改性酚醛树脂为结合剂的镁碳砖,经200℃/12h热处理后的常温压缩强度分别提高了38.5%和30.4%,达到了43.94MPa和41.35MPa。砖坯的理化性能检测表明,随处理温度的升高,压缩强度和体积密度越来越小,显气孔率越来越大,200~1100℃各指标变化显著,1100~1550℃各指标没有显著变化,但呈变差趋势。  相似文献   

20.
在流化床加压热解装置中考察温度、压力、气氛和生物质掺混比等条件对西湾煤与秸秆共热解特性的影响,结果表明:在600℃,0.3 MPa,100%N2气氛条件下,随着生物质掺混比增加,共热解油产率先增加后降低,实验值均大于计算值;当生物质掺混比为30%(质量分数)时,共热解油的实验值达到最大(16.90%),高于计算值(13.05%);热解压力由常压升至1.0 MPa时,受高氢分压作用下较多的氢分子参与自由基的加氢饱和作用,共热解油产率先增加后降低,在0.3 MPa时共热解油产率达到最大(17.90%);100%(体积分数,下同)N2,100%CO2和50%CO2+50%H2气氛下的共热解油产率分别为16.73%,16.55%和16.07%;与焦油相比,共热解油的密度变化不大,在元素中碳的质量分数由79.32%降低至71.80%,硫的质量分数由0.60%降低至0.31%,n(H)/n(C)增加;共热解油中脂肪烃、芳香烃和含氧化合物的质量分数降低,酚类组分的质量分数增加,三环及以上的多环产物裂解为小分子化合物,油品质量得到改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号