首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
探地雷达在地下管线探测中的应用   总被引:1,自引:0,他引:1  
探地雷达技术是如今适应快速、准确、无损地探测地下障碍物而迅速发展的电磁技术。文中介绍了探地雷达的工作原理及工作方式,并通过结合工程实例来探讨探地雷达在地下管线探测中的广泛应用。  相似文献   

2.
毛琳  俞明  常洲  钟远根 《现代雷达》2003,25(6):19-20,38
通过对南京市白下路污水管道铺设工程的地下管线勘察测定,介绍了探地雷达技术在城市地下管线的应用。简述了其作业方法,管线的判读,数据处理等。  相似文献   

3.
提出了基于格雷互补码的极化探地雷达系统。将格雷互补码作为探测信号,通过改变天线的极化方式获得地下管线回波的极化数据,实现管线分布探测。仿真及实验结果表明,相较于交叉极化,当天线采取共极化方式时管线的散射能量更强。进一步地,在同等条件下,对比基于格雷互补码和步进频率信号的极化探地雷达管线探测效果。典型无参考量化指标表明,前者目标响应更强,成像更清晰,更有利于地下管线走向分布的准确识别。  相似文献   

4.
不同地下介质条件下探地雷达的探测深度问题分析   总被引:12,自引:0,他引:12  
探地雷达技术巳成为近年来岩土工程领域探查地下目标体的重要手段,其应用的关键问题之一是如何准确计算不同介质条件下的探测深度,并确定探查对象是否在雷达探测系统的有效测距范围之内。根据探地雷达测距的基本公式,讨论了雷达测深的重要影响因素:反射目标体的反向散射增益及散射截面积。将地下岩土介质的反射体目标模型归结为三种典型类别:光滑、粗糙反射界面及点状目标体,同时给出了这三种反射体的简单数学模型,及计算分析。结合目前国内广泛使用的三种不同类型的探地雷达系统,计算得到了在不同地区或不同地下介质条件下的最大探测深度,为实际探测工程提供了较有价值的参考。  相似文献   

5.
探地雷达已经成为城市地下管线,尤其是非金属管线探测的重要手段之一,但由于地下介质复杂,利用探地雷达估计地下管线埋深时仍存在精度不足和抗干扰能力弱等问题。本文提出使用三维速度谱方法来估计雷达剖面中的地下管线埋藏深度,通过自动扫描双曲线反射信号来计算出电磁波在地下介质中的传播速度。仿真数据和实际数据表明,三维速度谱方法估算的速度值与真实值之间的误差小于3.8%。最后,使用估算的速度值对探地雷达剖面进行背向传播偏移处理,获取准确的地下管线埋深。  相似文献   

6.
7.
8.
本文提出一种基于加权相关的后向投影成像算法以抑制经典后向投影算法中因“延时-求和”所带来的图像中的伪影。该算法通过加权和相关处理重构对成像区域中各点的反向散射响应。利用各回波通道之间的关联性,通过计算成像点所对应各回波通道之间的皮尔逊加权系数,为各通道回波幅值进行加权,其可增强目标区域的反射能量;进一步,对加权后的幅值响应数据进行互相关,削弱了非目标区域反射能量。采用该算法对频率步进探地雷达探测得到的管线数据进行成像处理,实验结果表明:基于加权相关的后向投影算法能显著抑制图像中的伪影,有利于目标的识别。此外,对于多目标探测,该算法还能消除多目标叠影带来的虚假目标。  相似文献   

9.
10.
11.
基于鲁棒Capon波束形成的探地雷达成像算法   总被引:2,自引:0,他引:2  
传统的探地雷达(Ground Penetrating Radar, GPR)成像算法属于非自适应方法,其成像结果中存在较强的旁瓣和杂波干扰,而自适应方法具有很强的干扰抑制能力。该文利用鲁棒Capon波束形成(Robust Capon Beamforming, RCB)理论,提出了一种自适应的基于RCB的GPR成像算法,不仅考虑了GPR工作场景下电磁波折射现象,同时研究了适用于GPR成像的协方差矩阵构造方法。所提算法可大幅降低成像结果中旁瓣和杂波能量,并在一定程度上提高成像分辨率,实测数据的实验结果证明了算法的有效性。  相似文献   

12.
考虑到探地雷达目标检测效率低的问题,该文基于目标回波能量空间分布的三参数双曲线模型,提出了一种快速的地下目标检测算法。算法首先利用相邻1维回波的相关性提取回波双曲线,再能量加权拟合曲线以估计出回波模型的两个参数,最后通过1维Hough变换来完成目标检测与定位。实测数据实验结果表明该文算法在不降低目标检测性能和定位精度的同时,计算时间只有传统基于Hough变换检测算法的1.5%左右,计算量的理论分析证明了该文算法在计算效率上的优势。  相似文献   

13.
脉冲探地雷达的模拟计算   总被引:1,自引:0,他引:1  
本文在给出Debye型色散媒质中2.5维时域有限差分法(2.5D-FDTD法)迭代公式的基础上,对无载频脉冲波在不同色散媒质中的传播特性进行了计算,分析了脉冲产生畸变的原因,并提出对部分畸变脉冲进行整形的方法。分别对地下单体目标和群体目标的雷达回波电平图进行了模拟计算,并与实际无载频脉冲探地雷达的探测结果进行比较,二者有较好的一致性,证实了本文所给计算公式的正确性。另外,还分析了土壤参数对雷达探测深度和分辨率的影响。  相似文献   

14.
周琳  粟毅 《电子与信息学报》2011,33(11):2714-2719
该文基于探地雷达(Ground Penetrating Radar, GPR)回波数据之间的互相关性,提出了一种用于抑制GPR成像中杂波干扰的反向投影(Back Projection, BP)成像算法。与标准BP算法相比,该文的互相关反向投影(Cross-correlated Back Projection, CBP)算法增加了数据间互相关运算的步骤,而且无需引入额外的参考信号通道。理论分析和实验结果均表明,CBP算法不仅抑制了标准BP算法成像结果中的杂波干扰,而且在一定程度上提高了成像分辨率。  相似文献   

15.
压缩感知理论在频率步进探地雷达偏移成像中的应用   总被引:3,自引:2,他引:1  
该文针对频率步进探地雷达的具体工作过程,利用目标成像空间的稀疏性提出了一种基于压缩感知理论的频率步进探地雷达偏移成像算法,成像过程中首先采用杂波抑制方法在频率域去除直达波,同时利用交叉验证算法来估计成像过程中的正则化参数,最后基于稀疏约束最优化方法实现对地下目标成像,仿真和实验数据表明了该算法的可行性和有效性。  相似文献   

16.
该文针对探地雷达(GPR) 2维剖面图像中目标特征提取困难及其识别精度较低等问题,采用深度学习方法来提取2维剖面图像中目标的特征双曲线。根据GPR工作的物理机制,设计了一种级联结构的卷积神经网络(CNN),先检测并去除回波数据中的直达波干扰信号,再利用CNN得到B扫描(B-SCAN)图像的特征图,并对特征信号进行分类识别以提取目标的特征双曲线。同时,为处理各种干扰信号影响目标特征双曲线结构完整性的问题,提出了一种基于方向引导的特征数据补全方法,提高了目标特征双曲线识别的准确率。与方向梯度直方图(HOG)算法、单级式目标检测(YOLOV3)算法和更快速的区域卷积神经网络(Faster RCNN)算法相比,在综合评价指标F上该文方法的检测结果是最优的。  相似文献   

17.
运用探地雷达对分层介质中的目标进行探测时,时域后向投影算法是一种常用的成像方法。但大运算量和低成像分辨力一直是该算法难以实用化的瓶颈问题。该文提出一种实用的高分辨快速后向投影成像方法。首先提出了基于1维搜索或求解一元四次方程的传播时延快速计算方法。其次,设计了一种对时延曲线上散射回波进行处理的加权因子以提高成像质量。运用所提的成像算法对仿真数据进行了处理,获得了高分辨的成像结果,验证了该算法的有效性和快速运算能力。  相似文献   

18.
全波形反演(FWI)通过综合利用波场的运动学和动力学特征来实现对地下介质的高精度建模,是最具潜力的反演方法之一。目前,全波形反演仍面临诸多亟待解决的问题,最著名的就是初始模型依赖性问题。低频成分对于恢复长波背景速度结构进而构建初始模型至关重要,但是实际采集的探地雷达(GPR)数据中往往存在低频信息不足的情况,导致全波形反演难以获得理想的结果。为此,该文提出基于地面多偏移距雷达数据的包络-波形反演方法,利用包络波场携带低频信息的特征来构建大尺度背景模型,同时又实现了对小尺度弱扰动目标体的精细刻画。在原始记录低频成分缺失的情况下,通过与常规全波形反演方法进行对比表明:包络-波形反演方法能够有效重构缺失的低频成分,提高对地下大尺度背景构造和细节信息的成像效果。  相似文献   

19.
探地雷达工作的最终目的是反演解释地下结构参数,由于大多数反演问题是非线性的,研究非线性的反演方法具有重要意义。该文提出基于改进粒子群优化方法的探地雷达反演问题,该算法以信号均方误差为目标函数,用时域有限差分方法作为正演工具。通过与基于遗传算法等反演方法的结果对比,说明了该算法兼顾了准确性和简便性;通过对模型复杂、参数多、信噪比差的仿真数据的反演结果,说明了该算法对多参数反演的有效性和良好的抗噪性;对实测数据的反演结果,进一步验证了该算法的可行性。  相似文献   

20.
基于探地雷达频谱反演法的薄层识别技术研究   总被引:1,自引:0,他引:1  
衡量探地雷达对薄层的识别能力通常有两个指标:最小可识别层厚和反射系数的识别精度。该文提出的频谱反演法,通过对电磁波在多层介质中频谱传输函数的推导,得出回波频谱的正演计算模型,然后采用阻尼最小二乘法进行二参数反演。通过实验,证实了这种方法能够对层厚小于八分之一波长的薄层进行层厚和反射系数的有效识别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号