首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 814 毫秒
1.
3003铝合金热变形行为   总被引:2,自引:0,他引:2  
采用不同熔体处理工艺获得3种不同冶金质量的3003铝合金,通过Gleeble-1500热模拟试验机对3003铝合金进行变形温度为300℃~500℃,应变速率为0.01s-1~10s-1高温等温压缩实验。结果表明,3003铝合金具有正的应变速率敏感性,热变形激活能Q与含杂量H呈线性关系,经高效综合处理的3003铝合金热变形激活能最低为174.62kJ.mol-1,有利于材料热塑性变形。采用加工硬化率计算不同熔体处理的3003铝合金的临界应变值,获得了经不同熔体处理的3003铝合金发生动态再结晶的临界条件。  相似文献   

2.
Hot deformation behavior of the 3003 Al alloy was investigated by conducting hot compression tests at various temperatures (300?C500 °C) and strain rates (0.0l?C10.0 s?1). A constitutive equation was established to describe the flow behavior. The apparent activation energy of the 3003 Al alloy was determined to be 174.62 kJ·mol?1, which is higher than that for self-diffusion in pure Al (165 kJ·mol?1). Processing maps at a strain of 0.6 for hot working were developed on a dynamic materials model. The maps exhibit a flow instability domain at about 300?C380 °C and 1.0?C10.0 s?1. Dynamic recrystallization occurs extensively in the temperature range of 450?C500 °C and at the strain rate of 10.0 s?1. The optimum parameters of hot working for the 3003 Al alloy are confined at 500 °C and 10.0 s?1 with the highest efficiency (37%).  相似文献   

3.
1 Introduction The sheets (especially can body sheet) used for easy-open can adopted in China still rely greatly on import at present[1]. Only some kinds of domestic-made sheets reach the quality standard, so the sheets can only support for lids making in…  相似文献   

4.
The deformation behavior of as-forged Ti–43Al–9V–Y alloy was investigated by hot compression tests in the temperature range of 1100–1225 °C and strain rate range of 0.01–0.5 s−1. The results show that the alloy exhibits negative temperature sensitivity and positive strain rate sensitivity. The stress exponent (n = 3.02) and the apparent activation energy (Q = 342.27 kJ/mol) of the present alloy are lower than that of previous reported TiAl alloys, which suggests that the as-forged Ti–43Al–9V–Y alloy exhibits better deformability at low temperatures and high strain rates. A processing map for hot working was developed on the basis of a dynamic material model. The deformation mechanisms were analyzed by the processing map. The optimum processing condition at the strain of 0.6 is 1180–1210 °C/0.01–0.05 s−1. A crack-free Ti–43Al–9V–Y sheet was prepared by hot rolling at these optimized parameters. EBSD results show that dynamic recrystallization is more likely to occur for γ phase.  相似文献   

5.
用热模拟试验方法对压力罐用铝材(简称"铝原块")进行热压缩变形,探讨了熔体处理和变形条件对该材料高温流变应力行为的影响.结果表明:经不同熔体处理的铝原块均存在稳态流变特征;应变速率达10.00s-1时,流变曲线上均出现峰值应力,即该材料出现了动态再结晶;稳态变形阶段的流变应力与应变速率或变形温度分别满足双曲正弦函数关系和Arrhenius关系;与未处理的、常规处理的铝原块相比,经高效熔体处理的铝原块的真应力值及进入稳态阶段所对应的真应变值均较小,热变形激活能也有较明显的降低;此外还求出经高效熔体处理的铝原块的高温流变应力方程.  相似文献   

6.
Hot deformation behavior of Mg-7.22Gd-4.84Y-1.26Nd-0.58Zr magnesium alloy   总被引:1,自引:0,他引:1  
The behavior evolvement of Mg-7.22Gd-4.84Y-1.26Nd-0.58Zr(GWN751K) magnesium alloy during the hot deformation process was discussed.The flow stress behavior of the magnesium alloy over the strain rate range of 0.002 to 2.000 s-1 and in the temperature range of 623 to 773 K was studied on a Gleeble-1500D hot simulator under the maximum deformation degree of 60%.The experimental results showed that the relationship between stress and strain was obviously affected by strain rate and deformation temperature.The flow stress of GWN751K magnesium alloy during high temperature deformation could be represented by the Zener-Hollomon parameter in the hyperbolic Arrhenius-type equation.The stress exponent n and deformation activation energy Q were evaluated by linear regression analysis.The stress exponent n was fitted to be 3.16.The hot deformation activation energy of the alloy during hot deformation was 230.03 kJ/mol.The microstructures of hot deformation were also influenced by strain rate and compression temperature strongly.It was found that the alloy could be extruded at 723 K with the mechanical properties of σ0.2 = 260 MPa,σb = 320 MPa,and δ = 18%.  相似文献   

7.
The high-temperature deformation behavior and processing map of 7050 aluminum alloy were investigated by tensile tests conducted at various temperatures (340, 380, 420, and 460 °C) with various strain rates of 10−4, 10−3, 10−2, and 0.1 s−1. The results show that the instability region with a peak power dissipation efficiency of 100 % occurs at the low deformation temperature region of 340 °C to 380 °C and high strain rates (>10−3 s−1). The 7050 aluminum alloy exhibited a continuous dynamic recrystallization domain with power dissipation efficiency of 35% to 60 % in the deformation temperature range of 410 °C to 460 °C and the strain rate range of 10−4–10−3 s−1. The domain with a power dissipation efficiency of 35 % to 50 % occurring at high deformation temperatures and strain rates was interpreted to represent dynamic recovery. Dynamic recovery and continuous dynamic recrystallization provide chosen domains for excellent hot workability.  相似文献   

8.
采用Gleeble-1500热模拟实验机在温度为600~800°C、应变速率为0.01~10 s-1的热变形条件下对新型无镍白色Cu-12Mn-15Zn-1.5Al-0.3Ti-0.14B-0.1Ce(质量分数,%)合金进行热压缩模拟实验;根据该合金热变形行为及热加工特征,建立该合金热变形的本构方程和热加工图。该合金热变形过程中变形激活能为203.005 k J/mol。当真应变为0.7时,合金热加工图中存在一个失稳区,此区域的变形温度为600~700°C,应变速率为0.32~10 s-1。在较适宜的热变形条件(800°C、10 s-1)下获得的合金具有良好的表面质量和内部组织。同时,该无镍合金具有与传统镍白铜Cu-15Ni-24Zn-1.5Pb合金相近似的白色色度和肉眼不易察觉的色差(小于1.5)。  相似文献   

9.
经不同熔体处理的易拉罐用铝材的热压缩变形组织   总被引:1,自引:0,他引:1  
采用动态热/力模拟实验技术对经不同熔体处理的易拉罐用铝材进行高温压缩变形实验,并用光学显微镜、透射电镜分析探讨其热变形组织特征。结果表明:冶金质量影响易拉罐用铝材的动态再结晶组织特征,在未处理或常规熔体处理状态下存在枝晶网胞结构,晶粒组织不均匀;高效熔体处理使易拉罐用铝材在较低的温度下即可通过亚晶合并方式发生动态再结晶,并在变形温度573~673 K、应变速率0.1~1.0 s-1、变形量约0.7的较宽的热变形工艺条件下可获得细小且分布较均匀的再结晶晶粒组织。  相似文献   

10.
通过热压缩实验研究了ZL270LF铝合金在变形量为70%,温度为300~550 ℃,应变速率为 0.01~10 s-1范围的热变形行为,建立了流变应力本构方程模型,绘制出了二维热加工图,确定了最佳热加工区域,采用电子背散射衍射(EBSD)和透射电子显微镜(TEM)技术研究了该合金的组织演变规律。结果表明:ZL270LF铝合金的流变应力随变形温度的升高和应变速率的降低而降低,热变形激活能为309.05 kJ/mol,最优热加工区为温度470~530 ℃、应变速率为0.01~1 s-1。该合金在热变形过程中存在3种不同的DRX机制,即连续动态再结晶(CDRX)、不连续动态再结晶(DDRX)和几何动态再结晶(GDRX),其中CDRX是ZL270LF铝合金动态再结晶的主要机制。  相似文献   

11.
In this study, a set of constitutive equation corrected for deformation heating is proposed for a near equi-atomic NiTi shape memory alloy using isothermal hot compression tests in temperature range of 700 to 1000 °C and strain rate of 0.001 to 1 s−1. In order to determine the temperature rise due to deformation heating, Abaqus simulation was employed and varied thermal properties were considered in the simulation. The results of hot compression tests showed that at low pre-set temperatures and high strain rates the flow curves exhibit a softening, while after correction of deformation heating the softening is vanished. Using the corrected flow curves, the power-law constitutive equation of the alloy was established and the variation of constitutive constants with strain was determined. Moreover, it was found that deformation heating introduces an average relative error of about 9.5% at temperature of 800 °C and strain rate of 0.1 s−1. The very good agreement between the fitted flow stress (by constitutive equation) and the measured ones indicates the accuracy of the constitutive equation in analyzing the hot deformation behavior of equi-atomic NiTi alloy.  相似文献   

12.
The 3003 aluminum alloys with four different initial grain sizes were deformed by isothermal compression in the range of deformation temperature 300–500 °C at strain rate 0.01–10.0 s?1 with Gleeble-1500 thermal simulator. The results show that the smaller the initial grain size of the alloy, the greater the required deformation resistance, and the smaller the peak strain, which is conducive to the occurrence of dynamic recrystallization (DRX). The DRX critical strain increases with the decrease of the deformation temperature or the increase of the strain rate, and the DRX volume fraction increases with the decrease of the strain rate and the increase of the deformation temperature. The average grain size of 3003 aluminum alloy after deformation is smaller than that before deformation. The smaller the initial grain size, the lower the critical recrystallization strain. So the DRX is carried out more fully, contributing to the thermoplastic deformation of the alloy.  相似文献   

13.
The hot compression deformation behavior of Cu–3Ti–0.1Zr alloy with the ultra-high strength and good electrical conductivity was investigated on a Gleeble–3500 thermal-mechanical simulator at temperatures from 700 to 850 °C with the strain rates between 0.001 and 1 s−1. The results show that work hardening, dynamic recovery and dynamic recrystallization occur in the alloy during hot deformation. The hot compression constitutive equation at a true strain of 0.8 is constructed and the apparent activation energy of hot compression deformation Q is about 319.56 kJ/mol. The theoretic flow stress calculated by the constructed constitutive equation is consistent with the experimental result, and the hot processing maps are established based on the dynamic material model. The optimal hot deformation temperature range is between 775 and 850 °C and the strain rate range is between 0.001 and 0.01 s−1.  相似文献   

14.
采用高温等温压缩试验,对Cu?Ni?Si?P合金在应变速率0.01~5?1、变形温度600~800°C条件下的高温变形行为进行了研究,得出了该合金热压缩变形时的热变形激活能Q和本构方程。根据实验数据与热加工工艺参数构建了该合金的热加工图,利用热加工图对该合金在热变形过程中的热变形工艺参数进行了优化,并利用热加工图分析了该合金的高温组织变化。热变形过程中Cu?Ni?Si?P合金的流变应力随着变形温度的升高而降低,随着应变速率的提高而增大,该合金的动态再结晶温度为700°C。该合金热变形过程中的热变形激活能Q为485.6 kJ/mol。通过分析合金在应变为0.3和0.5时的热加工图得出该合金的安全加工区域的温度为750~800°C,应变速率为0.01~0.1 s?1。通过合金热变形过程中高温显微组织的观察,其组织规律很好地符合热加工图所预测的组织规律。  相似文献   

15.
为了建立精确模拟6063铝合金高温流变应力的本构方程,在温度为573~773 K和应变速率为0.5~50 s-1的条件下,采用Gleeble-1500热模拟机进行等温热压缩实验。结果表明:可以采用参数Z描述温度和应变速率对6063铝合金热变形行为的影响,建立的本构方程中的材料常数(α,n,Q和A)可以表示成应变的4次多项式函数。模拟结果表明:所建立的本构方程能精确预测6063铝合金高温流变应力,因此,本构方程适合用于模拟热变形过程,如挤压和锻造,并且可以在工程应用中正确设计变形参数。  相似文献   

16.
The behavior of flow stress of Al sheets used for pressure can prepared by different melt-treatment during plastic deformation at elevated temperature was studied by isothermal compression test using Gleeble1500 dynamic hot-simulation testing machine. The results show that the AI sheets possess the remarkable characteristic of steady state flow stress when they are deformed in the temperature range of 350-500℃ at strain rates within the range of 0.01-10.0s^-1. A hyperbolic sine relationship is found to correlate well the flow stress with the strain rate, and an Arrhenius relationship with the temperature, which implies that the process of plastic deformation at elevated temperature for this material is thermally activated. Compared with the AI pieces prepared by no or conventional melt-treatment, hot deformation activation energy of AI sheets prepared by high-efficient melt-treatment is the smallest ( Q= 168.0kJ/mol), which reveals that the hot working formability of this material is very better, and has directly to do with the effective improvement of its metallurgical quality.  相似文献   

17.
The TC6 alloy produced in Baoji nonferrous metals work, Xian, China, is one of the best titanium alloys with good resistance against heat and corrosion and is widely used in the aviation and aerospace industries. In this paper, isothermal compression tests were conducted on the TC6 alloy in the Thermecmastor Z simulator, at temperatures between 800 and 1040 °C at strain rates between 0.001 and 50 s−1 to a 50% height reduction. The experimental results are presented as variations of flow stress with deformation temperature, strain rate, and strain. On the basis of the present experimental results and deformation behavior, a constitutive equation for the TC6 alloy was proposed by employing an Arrhenius-type equation. The activation energy of deformation (Q) and work-hardening index (n) are found to be a function of strain. The present equation is in good agreement with the experimental data.  相似文献   

18.
《Intermetallics》2000,8(5-6):559-562
Superplastic behavior under the conditions of a temperature range from 850 to 1075°C and strain rates varying from 8×10−5 to 1×10−3 s−1 was investigated for Ti–33Al–3Cr–0.5Mo (wt%) alloy with a very fine grain size obtained by the multi-step thermal mechanical treatment. The results show that the TiAl-based alloy with a hot-deformed fine grain size possesses good superplasticity. It exhibits a strain rate sensitivity coefficient of 0.9 at a strain rate of 3×10−5 s−1 and temperature from 1000 to 1075°C. Moreover, the strain rate sensitivity coefficient is stable during the hot deformation, and a tensile elongation of 517% was obtained at 1075°C and a strain rate of 8×10−5 s−1. The superplastic behavior of the present fine-grained TiAl-based alloy can be explained by the local strain hardening and high m value during the tensile deformation. Microstructure evolution in the superplastic deformation was also discussed.  相似文献   

19.
The hot deformation behavior of a Ta-particle reinforced TiAl composite was studied. Ti–48Al–2Cr–2Nb– 0.2W(at.%)/20vol.%Ta metal matrix composite was fabricated by spark plasma sintering. The deformation behavior was investigated by hot compression tests at the temperature ranging from 1050 to 1200 °C and the strain rate ranging from 1×10−3 to 1 s−1. The constitutive equation containing true strain variables was established. The values of activation energy Q under different strain degrees are between 240 and 280 kJ/mol, which are lower than that of pure TiAl. Based on dynamic material modeling, the processing maps at various strain degrees were established, and the optimized parameters for hot working are 1050–1100 °C and 0.005–0.01 s−1. The microstructural evolution during deformation was characterized, which indicated that the dynamic recrystallization plays an important role in this process.  相似文献   

20.
Compression tests of the Al-Zn-Mg-Cu-Zr(7055) alloy were performed at various strains and temperatures from 300 to 450°C under a constant strain rate between 10−2 s−1 and 1 s−1. Microstructures during hot deformation were studied by transmission electron microscopy (TEM). Dislocation density, dislocation cells and subgrains of the deformed samples were investigated in detail and compared to make a better understanding of the microstructure evolution. The results showed that stress-strain curves under the experimental conditions belonged to the type of dynamic recovery. When the alloy deformed at various strains and 300°C, the microstructure underwent a process of disordered dislocations to cell structure, subgrain structure and subgrain coarsening. With the temperature increasing, subgrains grew and dislocation density in the interior decreased at a strain rate of 1 s−1. At the temperature of 350°C, the average diameter of subgrains decreased, sub-boundaries broadened and dislocation density in the interior decreased when the strain rate was increased. The deformed samples of 7055 alloy had smaller subgrains than that of 7005 alloy at the same compression condition because of high alloy content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号