首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
In the presence of an acid catalyst, the dimethyl acetal of 2-acetyltetrahydrofuran (1) is converted into a mixture of three isomeric acetals composed of the reactant and two diastereomers of 2-methoxy-2-(1-methoxyethyl)tetrahydrofuran (2). The relative thermodynamic stabilities of these acetals have now been determined by chemical equilibration. The least stable isomer is 1, in the liquid phase 4–6 kJ mol–1 less stable than the two diastereomers. The geometry-optimized structures and relative energies of the title compounds were also studied by theoretical calculations (ab initio and DFT). Comparison of the theoretically determined relative stabilities of the diastereomers with the corresponding experimental data suggests the more volatile (and more stable) diastereomer to exist as a racemic mixture of the (R,S) and (S,R) configurations.  相似文献   

2.
The geometry optimized structures and total energies of 3-substituted (R) 2,5-dihydrofurans (a) and their isomers, 4-substituted 2,3-dihydrofurans (b), have been determined by ab initio calculations at the MP2/6-31G*//HF/6-31G* level. The nature of the moiety R has a marked effect on the relative total energies of the isomeric forms: at the calculation level cited, the reaction enthalpies for the a b isomerization range from +4.7 kJ mol–1 for R = MeO to –30.5 kJ mol–1 for both R = COOMe and R = NO2. The reaction enthalpies appear to be controlled by the electronic effect of R on the strength of p- conjugation in b. The a isomer has a planar ring, independent of R (excluding NH2), whereas the planarity of b depends on the electronic nature of R: the 2,3-dihydrofuran ring is planar for both R = COOMe and R = NO2, but nonplanar for less conjugation-enhancing substituents.  相似文献   

3.
The structure of the peroxyacetic acid (PAA) molecule and its conformational mobility under rotation about the peroxide bond was studied by ab initio and density functional methods. The free rotation is hindered by the trans-barrier of height 22.3 kJ mol–1. The equilibrium molecular structure of AcOOH (C s symmetry) is a result of intramolecular hydrogen bond. The high energy of hydrogen bonding (46 kJ mol–1 according to natural bonding orbital analysis) hampers formation of intermolecular associates of AcOOH in the gas and liquid phases. The standard enthalpies of formation for AcOOH (–353.2 kJ mol–1) and products of radical decomposition of the peroxide — AcO· (–190.2 kJ mol–1) and AcOO· (–153.4 kJ mol–1) — were determined by the G2 and G2(MP2) composite methods. The O—H and O—O bonds in the PAA molecule (bond energies are 417.8 and 202.3 kJ mol–1, respectively) are much stronger than in alkyl hydroperoxide molecules. This provides an explanation for substantial contribution of non-radical channels of the decomposition of peroxyacetic acid. The electron density distribution and gas-phase acidity of PAA were determined. The transition states of the ethylene and cyclohexene epoxidation reactions were located (E a = 71.7 and 50.9 kJ mol–1 respectively).  相似文献   

4.
Abstract  A series of variously substituted N-methylpiperidin-4-one-O-benzyloximes were synthesized by three different methods. Among them, the direct conversion of 2,6-diarylpiperidin-4-ones into the corresponding oxime ethers (method A) was proved to be better than the other two methods in the sense of good yield, convenience, easy work-up and quick reaction time. All the synthesized compounds are characterized by IR, Mass and NMR (1H NMR, 13C NMR, 1H-1H COSY, 1H-13C COSY and HMBC) spectral studies. The conformational preference of the synthesized oxime ethers with/without alkyl and aryl substituents at C-3/C-5 and C-2/C-6 is discussed using the spectral data. The observed chemical shifts and coupling constants suggest that the synthesized oxime ethers adopt chair conformation with equatorial orientation of all the substituents, whereas 1-methyl-3-isopropyl-2,6-diphenylpiperidin-4-one-O-benzyloxime also exists in boat conformation. Based on the NMR data, the effects of oximination on ring carbons and their associated protons and alkyl substituents are discussed. In addition, the effect of NMe group on the 2,6-diarylpiperidin-4-one-O-benzyloximes was also studied. Graphical abstract     相似文献   

5.
A precise, reliable, sensitive, and selective method for the determination of titanium(IV) is described. Titanium(IV) reacts withN 1-hydroxy-N 1,N 2-diphenylbenzamidine (HDPBA) and thiocyanate to form an orange-coloured mixed-ligand complex of stoichiometry 112 (Ti SCN HDPBA). The complex is quantitatively extractable into toluene from 0.05–0.15M hydrochloric acid. The spectrum of the complex exhibits an absorption maximum at 400 nm with a molar absorptivity of 20000M –1 cm–1 and the coloured system obeys Beer's law in the concentration range 0.20–3.0 gml–1 titanium. The effects of foreign ions and of various experimental parameters have been studied to establish the optimum conditions for the extraction and determination of titanium. The precision of the method has been evaluated and the relative standard deviation has been found to be 0.53%. The method has been successfully applied to the determination of titanium in synthetic matrices corresponding to titanium-containing ores, minerals, and alloys.  相似文献   

6.
The structures and energies of axial and equatorial conformers and rotamers of 4-substituted tetrahydro-2H-thiopyran-1,1-dioxides (tetrahydrothiopyran-1,1-dioxides, thiacyclohexane-1,1-dioxides, thiane-1,1-dioxides, and 1,1-dioxothianes; CH3, CH2OH, CHO, COCH3, CN, F, Cl, Br, and OCOCH3) were calculated using the hybrid density functionals B3LYP, B3P86, and B3PW91, as well as MP2 and the 6-31G(d), 6-31G(2d), 6-31G(3d), 6-31G(d,p), and 6-31+G(d) basis sets. MP2/6-31+G(d)/ /HF/6-31+G(d) [–G° = 1.73 kcal/mol], B3P86/6-31G(d) [–G° = 1.75 kcal/mol], and B3PW91/6-31G(d) [–G° = 1.85 kcal/mol] gave conformational free energy (G°) values at 180 K for 4-methyltetrahydro-2H-thiopyran-1,1-dioxide which were similar to the reported experimental values for methylcyclohexane (–G° = 1.80 kcal/mol), 4-methyltetrahydro-2H-thiopyran (–G° = 1.80 kcal/mol), and other 4-methyl-substituted heterocycles. All levels of theory showed that the conformational preferences of the 4-methanoyl (4-formyl), 4-ethanoyl (4-acetyl), and 4-cyano substituents were small. The HF calculations gave conformational free energy (G°) values for 4-chlorotetrahydro-2H-thiopyran-1,1dioxide which were closer to the experimental value than the MP2 and density functional methods. The best agreement with available experimental data for 4-bromotetrahydro-2H-thiopyran-1,1-dioxide was obtained from the HF/6-31G(2d), HF/6-31G(3d), and B3LYP/6-31G(2d) calculations, and, for 4-acetoxytetrahydro-2H-thiopyran-1,1-dioxide, from the HF/6–31G(3d) calculations. The conformational free energies (G°) and relative energies (E) of the conformers and rotamers have been compared with the correspondingly substituted cyclohexanes and tetrahydro-2H-thiopyrans and are discussed in terms of dipole–dipole (electrostatic) interactions and repulsive nonbonded interactions (steric) in the most stable axial and equatorial conformers. The axial S=O bond lengths are shorter than the equatorial S=O bond lengths and the C2–C3 bond lengths in the substituents with carbon-bonded to the ring are shorter than the C3–C4 and C4–C-5 bond lengths. In contrast, the C2–C3 bond lengths in the 4-halogen and 4-acetoxy substituents are longer than the C3–C4 and C4–C-5 bond lengths.  相似文献   

7.
The electronic structure, geometrical parameters and relative stability of the isomeric forms of N2O3 are analysed by means of ab initio calculations. Total energies of the different isomers are given. The energy difference between the most stable conformers of the symmetric N2O3 is 4.31 Kcal mol–1 as provided by 6–31G basis set. The height of the rotational barrier determined by the ab initio technique is 7.12 kcal mol–1.Member of the Carrera del Investigador CICPBA, R. Argentina.Member of the Carrera del Investigador CONICET, R. Argentina.Predoctoral fellow of CONICET, R. Argentina.  相似文献   

8.
The 17O NMR spectra of a number of unsaturated 5-membered cyclic acetals, 2-substituted 4-methylene-1,3-dioxolanes and their endocyclic isomers, 4-methyl-1,3-dioxoles, have been recorded. The 17O NMR chemical shifts, in comparison with those of similarly 2-substituted 1,3-dioxolanes, were used to explore the variation of the strength of p– conjugation in the unsaturated acetals as a function of the nature of substitution at C2. The 17O NMR shift data reveal that alkoxy substituents have a significantly more favorable effect on the strength of p– conjugation in 4-methyl-1,3-dioxoles than in 4-methylene-1,3-dioxolanes. This fact appears to be responsible for the previously observed unexpectedly large effect of alkoxy substitution on the relative thermodynamic stabilities of these two classes of isomeric compounds. Additional information of the unexpected charge distribution in 4-methyl-1,3-dioxoles is provided by their 1H and 13C NMR spectra.  相似文献   

9.
The reaction of the azide ion with the carbocation generated in the photolysis of 1,2,2,4,6-pentamethyl-1,2-dihydroquinoline in methanol was studied by pulse (conventional and laser) and steady-state photolysis techniques. The adduct of the azide ion was characterized by 1H NMR spectrum. Experimental results were interpreted taking into account a competition between the addition of methanol and azide ion to the carbocation. The rate constants for the reaction of the azide ion with the carbocation (k Az) were measured at 2—48 °C in a wide range of [N3 ]0 concentrations from 2·10–7 to 0.1 mol L–1 at different ionic strengths () of the solution. The resulting k Az values are more than an order of magnitude lower than those for diffusional-controlled reactions and vary from 3.2·108 ( = 0) to 4.5·106 L mol–1 s–1 ( = 0.8 mol L–1) in the presence of NaClO4 (18 °C). The activation energy of addition of the azide ion to the carbocation is 21 kJ mol–1, which is by 12 kJ mol–1 lower than the activation energy of the reaction of the carbocation with methanol. The features of the reaction under study are discussed from the viewpoint of the structures of carbocations generated in the photolysis of dihydroquinolines.  相似文献   

10.
Summary G2 theory is shown to be reliable for calculating isodesmic and homodesmotic stabilization energies (ISE and HSE, respectively) of benzene. G2 calculations give HSE and ISE values of 92.5 and 269.1 kJ mol–1 (298 K), respectively. These agree well with the experimental HSE and ISE values of 90.5±7.2 and 268.7±6.3 kJ mol–1, respectively. We conclude that basis set superposition error corrections to the enthalpies of the homodesmotic or isodesmic reactions are not necessary in calculations of the stabilization energies of benzene using G2 theory. The calculated values of the enthalpies of formation of such molecules containing multiple bonds such as benzene ands-trans 1,3-butadiene, which are found from the enthalpies of isodesmic and homodesmotic reactions rather than of atomization reactions, demonstrate good performance of G2 theory. Estimates of theH f o value for benzene from the G2 calculated enthalpies of homodesmotic reaction (2) and isodesmic reaction (3) are 80.9 and 82.5 kJ mol–1 (298 K), respectively. These are very close to the experimentalH f o value of 82.9±0.3 kJ mol–1. TheH f o value ofs-trans 1,3-butadiene calculated using the G2 enthalpy of isodesmic reaction (4) is 110.5 kJ mol–1 and is in excellent agreement with the experimentalH f o value of 110.0±1.1 kJ mol–1.  相似文献   

11.
Three new derivatives of 2,6-diacyldiaminopyridine are reported. NMR shift titrations were performed in CDCl3 with barbiturates. The diamide1 affords a greater complexation energy (–13.00 kJ mol–1) with bemegride than the dithioamide2 (–9.15 kJ mol–1). This result, unexpected on the basis of the proton acidities, is explained by the great torsion energy induced in2 by the bulky sulfur atom. Compounds3 and4 present unusual four and five H-bond features with barbital and relatively weak complexation energies (–9.53 and –16.34 kJ mol–1, respectively). Molecular mechanics indicates that ligand4 displays a helical secondary structure which is disrupted by complexation. Calculations of the H-bond energies (E calc.) of the intermolecular assemblies with barbital or phenobarbital and other host-guest complexes given in the literature give a good correlation (r=0.98) with experimental values: E calc.=1.07 G a–42.0. Limitations of this relation are discussed.  相似文献   

12.
Two conformers (chair, boat) of [l-(–)-menthyl)]-[2,2-methylene-bis-(4-methyl-6-tert-butylphenyl)] phosphite ozonide have been obtained by the low temperature ozonization (–80 °C) of [l-(–)-menthyl)]-[2,2-methylene-bis-(4-methyl-6-tert-butylphenyl)] phosphite. It was determined that decomposition of the ozonide is first order with the rate constant logk 0 = (10.92±1.10)–(14.02±1.25)/gq ( = 2.303RT, kcal mol–1), leading to [l-(–)-menthyl)]-[2,2-methylene-bis-(4-methyl-6-tert-butylphenyl)] phosphate and oxygen (including singlet oxygen). Conformational transitions (chair-boat) for [l-(–)-menthyl)]-[2,2-methylene-bis-(4-methyl-6-tert-butylphenyl)] phosphate have been registered by31P NMR spectroscopy.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1758–1761, October, 1994.This work was supported by Russian Foundation for Basic Research (Project No. 93-03-532l).  相似文献   

13.
The possibility of obtaining 1-aryl-3,5-diethoxycarbonyl-2,6-unsubstituted 1,4-dihydropyridines with electronacceptor substituents in the N-phenyl radical was demonstrated. The intermediate products of their formation, viz., 2,4-bis(arylaminomethyiene)-3-phenylglutaric acid esters, were established. The electrochemical oxidation potentials of 1-aryl-2,6-unsubstituted 1,4-dihydropyridines are 100–200 mV higher than those of the 2,6-dimethyl analogs. A linear correlation between the electrochemical oxidation potentials and the Taft 0 constants of the substituents in the 1-phenyl ring was established.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 373–377, March, 1991.  相似文献   

14.
The relative thermodynamic stabilities of 4,7-dihydro-1,3-dioxepin (4,6-dioxacycloheptene, 1a) and 4,5-dihydro-1,3-dioxepin (3,5-dioxacycloheptene, 1b), and of a number of their 2-substituted derivatives, have been determined by base-catalyzed chemical equilibration in DMSO solution. Without exception, the 4,5-dihydro isomer is the dominating species at thermodynamic equilibrium. The relative stability of the b form is promoted by the presence of a single alkyl group on C-2, whereas two alkyl groups on C-2 have an opposite effect. In general, the thermodynamic parameters H m and Sm , of isomerization vary unexpectedly with the pattern of substitution at C-2. These trends appear to be derived from significant substituent-induced conformational changes in the b isomer, as suggested by 13C and 17O NMR chemical shift data.  相似文献   

15.
The relative thermodynamic stabilities of 24 pairs of carbon-carbon double-bondexo-endo isomeric 2-substituted 4-methylene-1,3-dioxolanes (a) and 4-methyl-1,3-dioxoles (b) have been determined by base-catalyzed chemical equilibration in DMSO solution. In all cases, theendo isomer (b) is the favored species at thermodynamic equilibrium. A single alkyl substitutent on C-2 gives only a negligible contribution to the relative stability of the isomeric forms, but the presence of two alkyl groups on C-2 increases the relative stability of theendo isomer by 2–3 kL mol–1. A still higher effect in favor of theendo isomer is produced by introduction of a single alkoxy group on C-2; this effect is further slightly accentuated by 2,2-dialkoxy substitution at C-2. The origin of the favorable effect of 2-alkoxy substitution on the relative stability of theendo isomer is not clear, but it seems to arise from an unexpected stability of theendo isomer rather than from an enhanced destabilization of theexo form.  相似文献   

16.
The rotational barriers between the configurational isomers of two structurally related push–pull 4-oxothiazolidines, differing in the number of exocyclic CC bonds, have been determined by dynamic 1H NMR spectroscopy. The equilibrium mixture of (5-ethoxycarbonylmethyl-4-oxothiazolidin-2-ylidene)-1-phenylethanone (1a) in CDCl3 at room temperature to 333 K consists of the E- and Z-isomers which are separated by an energy barrier ΔG# 98.5 kJ/mol (at 298 K). The variable-temperature 1H NMR data for the isomerization of ethyl (5-ethoxycarbonylmethylidene-4-oxothiazolidin-2-ylidene)ethanoate (2b) in DMSO-d6, possessing the two exocyclic CC bonds at the C(2)- and C(5)-positions, indicate that the rotational barrier ΔG# separating the (2E,5Z)-2b and (2Z,5Z)-2b isomers is 100.2 kJ/mol (at 298 K). In a polar solvent-dependent equilibrium the major (2Z,5Z)-form (>90%) is stabilized by the intermolecular resonance-assisted hydrogen bonding and strong 1,5-type S · · · O interactions within the SCCCO entity. The 13C NMR ΔδC(2)C(2′) values, ranging from 58 to 69 ppm in 1ad and 49-58 ppm in 2ad, correlate with the degree of the push-pull character of the exocyclic C(2)C(2′) bond, which increases with the electron withdrawing ability of the substituents at the vinylic C(2′) position in the following order: COPh COEt > CONHPh > CONHCH2CH2Ph. The decrease of the ΔδC(2)C(2′) values in 2ad has been discussed for the first time in terms of an estimation of the electron donor capacity of the S fragment on the polarization of the CC bonds.  相似文献   

17.
Gas-phase reaction of acetylene with HgCl2 resulting in -chlorovinylmercury derivatives and their interaction with Cl and I anions and KI molecule was studied by the ab initio MP2 method with the Dunning—Hay double zeta basis set and LanL pseudopotential for Hg, K, and I atoms. The reaction was shown to proceed via a -complex of acetylene and HgCl2 (the calculated enthalpy of formation is –6.5 kcal mol–1). According to calculations, the activation energy of formation of cis--chlorovinylmercury chloride from acetylene and HgCl2 is 31 kcal mol–1. Chloride and iodide anions and KI molecule are readily added to both cis- and trans-isomer of -chlorovinylmercury chloride to give stable species.  相似文献   

18.
The thermal behaviour of Ba[Cu(C2O4)2(H2O)]·5H2O in N2 and in O2 has been examined using thermogravimetry (TG) and differential scanning calorimetry (DSC). The dehydration starts at relatively low temperatures (about 80°C), but continues until the onset of the decomposition (about 280°C). The decomposition takes place in two major stages (onsets 280 and 390°C). The mass of the intermediate after the first stage corresponded to the formation of barium oxalate and copper metal and, after the second stage, to the formation of barium carbonate and copper metal. The enthalpy for the dehydration was found to be 311±30 kJ mol–1 (or 52±5 kJ (mol of H2O)–1). The overall enthalpy change for the decomposition of Ba[Cu(C2O4)2] in N2 was estimated from the combined area of the peaks of the DSC curve as –347 kJ mol–1. The kinetics of the thermal dehydration and decomposition were studied using isothermal TG. The dehydration was strongly deceleratory and the -time curves could be described by the three dimensional diffusion (D3) model. The values of the activation energy and the pre-exponential factor for the dehydration were 125±4 kJ mol–1 and (1.38±0.08)×1015 min–1, respectively. The decomposition was complex, consisting of at least two concurrent processes. The decomposition was analysed in terms of two overlapping deceleratory processes. One process was fast and could be described by the contracting-geometry model withn=5. The other process was slow and could also be described by the contracting-geometry model, but withn=2.The values ofE a andA were 206±23 kJ mol–1 and (2.2±0.5)×1019 min–1, respectively, for the fast process, and 259±37 kJ mol–1 and (6.3±1.8)×1023 min–1, respectively, for the slow process.Dedicated to Prof. Menachem Steinberg on the occasion of his 65th birthday  相似文献   

19.
The synthesis ofo-hydroxybenzenediazoaminoazobenzene (HDAA) is described. Cadmium forms with HDAA in the presence of Triton X-100 a 13 complex, which gives a maximum absorption at 520nm with an apparent molar absorptivity of 1.97 × 1051 · mol–1 · cm–1 in pH 10 borax buffer solution and 1.52 × 1051 · mol–1 · cm–1 in ammoniacal medium. In both media, Beer's law is followed in the range of 0 –10 g of cadmium in 25ml of solution and the coefficients of variation do not exceed 1.5%. A derivative method has been employed to determine cadmium in certain waste water samples without separation.  相似文献   

20.
Nitropyrazoles     
The structures of substitutedN-aminonitropyrazoles and 1- and 2-amino-4-nitro-1,2,3-triazoles as well as the site of protonation of 1-aminopyrazole were determined based on the1H,13C, and15N (14N) NMR spectra. The13C NMR spectra were recorded under conditions of13C-{1H,14N} triple resonance. Effects of substituents in the pyrazole ring on the13C and14N chemical shifts were studied. The13C,1H and15N,1H spin-spin coupling constants, obtained using techniques of [1H]13C and [1H]15N polarization transfer (SPT, INEPT), were measured, fully assigned, and discussed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2181–2186, November, 1995.For Part 8, see Ref. 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号