首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wang D  Wei YH  Zhou Y  Zhang GQ  Zhang F  Li YQ  Zhang JP  Wu XA 《药学学报》2012,47(5):624-629
本研究旨在探讨基于多药耐药相关蛋白2(Abcc2/Mrp2)在大鼠肾脏表达性别差异的氧氟沙星的药代动力学变化。采用高效液相色谱法(HPLC)分别测定经尾静脉注射给予氧氟沙星(30 mg.kg1)后大鼠血浆和尿液中氧氟沙星的浓度;通过免疫组化法和流式细胞术分别对雄性和雌性大鼠肾脏Mrp2的表达进行定性和定量分析。结果表明在雄性大鼠体内,氧氟沙星药时曲线下面积(AUC)明显小于雌性大鼠,而尿排总量明显大于雌性大鼠;Mrp2在雄性大鼠肾脏中的表达显著高于雌性大鼠。因此,氧氟沙星药动学性别差异可能是由Mrp2在雄性和雌性大鼠肾脏中的表达差异所引起的。  相似文献   

3.
4.
The efflux proteins P-glycoprotein (P-gp), BCRP and members of the MRP-family (MRPs) are increasingly recognized as determinants of the absorption, tissue distribution and excretion of numerous drugs. A widely applied in vitro screening method, to assess the effect of these efflux transporters in transmembrane transport of drugs is based on the use of peripheral blood mononuclear cells (PBMC), in which the efflux of fluorescent dye Rhodamine 123 (Rh-123) can be easily measured. In avian species, the isolation of PBMCs is compromised by the presence of thrombocytes having approximately the same size. As an alternative, we validated the use of isolated splenocytes to assess Rhodamine 123 transport in the presence and absence of specific inhibitors for P-gp, MRPs and BCRP. Rh-123 efflux was concentration-dependent with the percentage of efflux that decreased with increasing concentrations. P-gp inhibitors, PSC833 and GF120918, significantly inhibit Rh-123 efflux, whereas inhibitors for MRPs and BCRP, MK571 and Ko-143, respectively, have a limited inhibitory effect. However, the effect of GF120918 was more pronounced as compared to PSC833, suggesting an additional role for BCRP next to P-gp in Rh-123 efflux. Moreover, fluoroquinolones were selected to test the applicability of the described model. None of these fluoroquinolones significantly inhibit P-gp function at concentrations up to 50 microM, with exception of danofloxacin and danofloxacin mesylate that were found to reduce Rh-123 efflux by approximately 15%.  相似文献   

5.
We evaluated the effect of acetaminophen (APAP), given as a single, 1g/kg body weight dose, on expression and activity of rat liver multidrug resistance-associated protein 2 (Mrp2) and P-glycoprotein (P-gp), two major canalicular drug transporters. The studies were performed 24h after administration of the drug. APAP induced an increase in plasma membrane content of Mrp2 detected by western blotting, consistent with increased detection of the protein at the canalicular level by immunoflourescence microscopy. In vivo biliary excretion of dinitrophenyl-S-glutathione, a well known Mrp2 substrate, was slightly but significantly increased by APAP, agreeing well with upregulation of the transporter. Basal biliary excretion of oxidized glutathione, an endogenous Mrp2 substrate, was also increased by APAP, likely indicating increased hepatic synthesis as a result of APAP-induced oxidative stress followed by accelerated canalicular secretion mediated by Mrp2. APAP also increased the expression of P-gp detected by western blotting and immunofluorescence microscopy as well as the in vivo biliary secretory rate of digoxin, a model P-gp substrate. Because specific APAP-conjugated metabolites are Mrp2 substrates, we postulate that induction of Mrp2 by APAP may represent an adaptive mechanism to accelerate liver disposition of the drug. In addition, increased Mrp2-mediated elimination of oxidized glutathione may be essential in maintaining the redox equilibrium in the hepatocyte under conditions of APAP-induced oxidative stress.  相似文献   

6.
The mechanisms involved in spironolactone (SL, 200 micromol/kg body weight, 3 days i.p.)-induced choleresis were explored in vivo by evaluating bile salt export pump (Bsep)-, multidrug resistance-associated protein 2 (Mrp2)-, and anion exchanger 2 (AE2)-mediated secretory processes in rat liver. Hepatic bile salt metabolism was also analyzed. Total bile flow was significantly increased by SL, primarily due to an increase in bile salt-independent bile flow, whereas bile salt secretion was decreased. SL did not produce any choleresis in TR(-) rats. SL decreased the de novo bile salt synthesis rate in concordance with impaired microsomal cholesterol 7 alpha-hydroxylase activity, thus leading to a decrease in endogenous bile salt pool size. In contrast, the maximum secretory rate of tauroursodeoxycholate as well as expression of Bsep protein detected by Western blotting were not affected. Thus, decreased bile salt availability for canalicular transport rather than transport capability itself likely explains reduced biliary secretion of bile salts. Biliary secretion of glutathione, an endogenous substrate of Mrp2, and HCO(3)(-), the AE2 substrate, were increased by SL, as a main factor explaining enhanced bile salt-independent bile flow. Western blot studies revealed increased expression of Mrp2 in response to SL whereas AE2 content remained unchanged. Enhanced activity and expression of Mrp2 was confirmed by analyzing the excretion rate of dinitrophenyl S-glutathione, an exogenous substrate of Mrp2, in isolated hepatocytes and by immunofluorescence microscopy, respectively. We conclude that SL increased bile flow mainly by increasing the biliary secretion of glutathione species and HCO(3)(-); increased expression of Mrp2 is also involved.  相似文献   

7.
8.
The protective effect of a powder of grain (Lisosan G) against cisplatin-induced toxicity in rats was studied. Male rats were fed with Lisosan G before injection of cisplatin and four days later they were killed and blood was collected along with hepatic, renal and testicular tissues. The results showed that cisplatin treatment increased plasma blood urea nitrogen, creatinine and hydrogen peroxide and decreased cytochrome P450 content in renal and hepatic tissues. It also reduced the plasmatic testosterone level and caused a depletion of testicular 17α-progesterone hydroxylase activity. In the group fed with Lisosan G and treated with cisplatin blood urea nitrogen and creatinine returned to the control level indicating a protective effect of Lisosan G. It was also observed that the ones fed with Lisosan G were able to attenuate the decrease in the P450-dependent activities and the activities of antioxidant enzymes as well. Lisosan G protected the testicular 17α-progesterone hydroxylase activity and increased the plasma testosterone level compared to animals treated only with cisplatin. Our results showed a protective effect of Lisosan G against the cisplatin induced toxicity. The protective effect of Lisosan G could be associated mainly with the attenuation of the oxidative stress and the preservation in antioxidant enzymes.  相似文献   

9.
Acetaminophen is used as first-choice drug for pain relief during pregnancy. Here we have investigated the effect of acetaminophen at subtoxic doses on the expression of ABC export pumps in trophoblast cells and its functional repercussion on the placental barrier during maternal cholestasis. The incubation of human choriocarcinoma cells (JAr, JEG-3 and BeWo) with acetaminophen for 48 h resulted in no significant changes in the expression and/or activity of MDR1 and MRPs. In contrast, in JEG-3 cells, BCRP mRNA, protein, and transport activity were reduced. In rat placenta, collected at term, acetaminophen administration for the last three days of pregnancy resulted in enhanced mRNA, but not protein, levels of Mrp1 and Bcrp. In fact, a decrease in Bcrp protein was found. Using in situ perfused rat placenta, a reduction in the Bcrp-dependent fetal-to-maternal bile acid transport after treating the dams with acetaminophen was found. Complete biliary obstruction in pregnant rats induced a significant bile acid accumulation in fetal serum and tissues, which was further enhanced when the mothers were treated with acetaminophen. This drug induced increased ROS production in JEG-3 cells and decreased the total glutathione content in rat placenta. Moreover, the NRF2 pathway was activated in JEG-3 cells as shown by an increase in nuclear NRF2 levels and an up-regulation of NRF2 target genes, NQO1 and HMOX-1, which was not observed in rat placenta. In conclusion, acetaminophen induces in placenta oxidative stress and a down-regulation of BCRP/Bcrp, which may impair the placental barrier to bile acids during maternal cholestasis.  相似文献   

10.
Hepatic multidrug resistance‐associated protein 2 (Mrp2) is responsible for the majority of the biliary elimination of endogenous and exogenous substances, therefore it is important to evaluate possible functional changes in Mrp2 activity under conditions of hyperlipidemia (HL). Thus, the present study assessed the protein expression and transporting activity of hepatic Mrp2 based on the in vivo biliary excretion of phenolsulfonphthalein (PSP) as a model anionic substrate for Mrp2 in poloxamer 407‐induced hyperlipidemic rats (HL rats) and compared these values with those for control rats. The pharmacokinetics of mycophenolic acid (MPA) and mycophenolic acid‐7‐O‐glucuronide (MPAG) were evaluated after the intravenous (5 mg/kg) and oral (10 mg/kg) administration of MPA to control and HL rats. In HL rats, the protein expression of hepatic Mrp2 and its biliary transporting activity exhibited significant reductions (by 24.3% and 24.6%, respectively) in the absence of a change in bile flow rate. Unexpectedly, HL and control rats showed comparable biliary excretion rates of MPAG due to the counter effects of the reduced expression and activity of Mrp2 and a 484% increase in the free fraction of MPAG in HL rats. The estimated biliary clearance value of free MPAG in HL rats was considerably slower (by 77.1%) than that in control rats. Although significant pharmacokinetic changes in total MPA and MPAG levels were not observed in HL rats, there was a marked increase in free MPA and MPAG levels. Clinically relevant pharmacokinetic changes in subjects with HL that are related to MRP2 could not be ruled out. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by liver histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential.  相似文献   

12.
Antibiotic treatments have been used to modulate intestinal bacteria and investigate the role of intestinal bacteria on bile acid (BA) homeostasis. However, knowledge on which intestinal bacteria and bile acids are modified by antibiotics is limited. In the present study, mice were administered various antibiotics, 47 of the most abundant bacterial species in intestine, as well as individual BAs in plasma, liver, and intestine were quantified. Compared to the two antibiotic combinations (vancomycin + imipenem and cephalothin + neomycin), the three single antibiotics (metronidazole, ciprofloxacin and aztreonam) have less effect on intestinal bacterial profiles, and thus on host BA profiles and mRNA expression of genes that are important for BA homeostasis. The two antibiotic combinations decreased the ratio of Firmicutes to Bacteroidetes in intestine, as well as most secondary BAs in serum, liver and intestine. Additionally, the two antibiotic combinations significantly increased mRNA of the hepatic BA uptake transporters (Ntcp and Oatp1b2) and canalicular BA efflux transporters (Bsep and Mrp2), but decreased mRNA of the hepatic BA synthetic enzyme Cyp8b1, suggesting an elevated enterohepatic circulation of BAs. Interestingly, the two antibiotic combinations tended to have opposite effect on the mRNAs of most intestinal genes, which tended to be inhibited by vancomycin + imipenem but stimulated by cephalothin + neomycin. To conclude, the present study clearly shows that various antibiotics have distinct effects on modulating intestinal bacteria and host BA metabolism.  相似文献   

13.

BACKGROUND AND PURPOSE

Bacterial lipopolysaccharide (LPS) induces fever through two parallel pathways; one, prostaglandin (PG)-dependent and the other, PG-independent and involving endothelin-1 (ET-1). For a better understanding of the mechanisms by which dipyrone exerts antipyresis, we have investigated its effects on fever and changes in PGE2 content in plasma, CSF and hypothalamus induced by either LPS or ET-1.

EXPERIMENTAL APPROACH

Rats were given (i.p.) dipyrone (120 mg·kg−1) or indomethacin (2 mg·kg−1) 30 min before injection of LPS (5 µg·kg−1, i.v.) or ET-1 (1 pmol, i.c.v.). Rectal temperature was measured by tele-thermometry. PGE2 levels were determined in the plasma, CSF and hypothalamus by elisa.

KEY RESULTS

LPS or ET-1 induced fever and increased CSF and hypothalamic PGE2 levels. Two hours after LPS, indomethacin reduced CSF and hypothalamic PGE2 but did not inhibit fever, while at 3 h it reduced all three parameters. Three hours after ET-1, indomethacin inhibited the increase in CSF and hypothalamic PGE2 levels but did not affect fever. Dipyrone abolished both the fever and the increased CSF PGE2 levels induced by LPS or ET-1 but did not affect the increased hypothalamic PGE2 levels. Dipyrone also reduced the increase in the venous plasma PGE2 concentration induced by LPS.

CONCLUSIONS AND IMPLICATIONS

These findings confirm that PGE2 does not play a relevant role in ET-1-induced fever. They also demonstrate for the first time that the antipyretic effect of dipyrone was not mechanistically linked to the inhibition of hypothalamic PGE2 synthesis.  相似文献   

14.
Taurine is an abundant free amino acid in inflammatory cells that protects cells from inflammatory damages. Although the protection mechanism remains unclear, taurine chloramine (Tau-Cl) produced by the reaction between taurine and hypochlorous acid in neutrophils plays an important role. In this study, we investigated the mechanism(s) by which Tau-Cl inhibits LPS-induced NO production in macrophages. Tau-Cl inhibited LPS-induced iNOS expression and NO production in RAW 264.7 cells. LPS treatment elevated the level of active Ras-GTP, and Tau-Cl inhibited LPS-induced Ras activation. Tau-Cl also inhibited ERK1/2 activation in a dose-dependent manner in both RAW 264.7 cells and murine peritoneal macrophages, whereas it did not exert any effect on p38 MAPK activation. Furthermore, Tau-Cl inhibited NF-kappaB activation without affecting AP-1 activity. These results suggest that Tau-Cl suppresses LPS-induced NO production by inhibiting specific signaling pathways. Thus, Tau-Cl protects cells from inflammatory injury resulting from overproduction of NO in a signaling pathway-specific manner.  相似文献   

15.
Ascorbic acid is a sugar acid and an essential vital food nutrient found mainly in fruits and vegetables. The purpose of this study was to investigate the effects of ascorbic acid against arsenic induced oxidative stress in blood of rat. In rat, treatment with ascorbic acid prevented the increased serum enzymatic activity of AST, ALT, ALP, ACP and LDH. In addition, treatment with ascorbic acid prevented elevated production of LPO, PC and NO and restored the depletion of reduced SOD and CAT activities. Interestingly, ascorbic acid markedly upregulated lymphocytes relative mRNA expression of lymphocytes SOD2 gene corresponding to GAPDH, house keeping candidate gene in arsenic-treated rat, which might provide anti-oxidative activity in the blood.  相似文献   

16.
Thalidomide has shown to inhibit, selectively and mainly the cytokine tumor necrosis factor-alpha (TNF-alpha), thus, thalidomide has inhibitory consequences on other cytokines; this is ascribed as an immunomodulatory effect. Novel thalidomide analogs are reported with immunomodulatory activity. The aim of this work was to synthesize some of these analogs and to assess them as immunomodulatory agents in an acute model of LPS-induced septic challenge in rat. Animal groups received orally twice a day vehicle carboxymethylcellulose (0.9%), or thalidomide in suspension (100mg/kg), or analogs in an equimolar dose. Two hours after last dose, rats were injected with saline (NaCl, 0.9%, i.p.) or LPS (5mg/kg, i.p.). Groups were sacrificed 2h after injection and samples of blood and liver were obtained. TNF-alpha, interleukin-6, -1beta, and -10 (IL-6, IL-1beta, IL-10) were quantified by enzyme linked immunosorbent assay (ELISA) and studied in plasma and liver. After 2h of LPS-induction, different patterns of measured cytokines were observed with thalidomide analogs administration evidencing their immunomodulatory effects. Interestingly, some analogs decreased significantly plasma and hepatic levels of LPS-induced proinflammatory TNF-alpha and others increased plasma concentration of anti-inflammatory IL-10. Thalidomide analogs also showed slight effects on the remaining proinflammatory cytokines. Differences among immunomodulatory effects of analogs can be related to potency, mechanism of action, and half lives. Thalidomide analogs could be used as a pharmacological tool and in therapeutics in the future.  相似文献   

17.
Microcystins (MCs), the products of blooming algae Microcystis, are waterborne environmental toxins that have been implicated in the development of liver cancer, necrosis, and even fatal intrahepatic bleeding. Alternative protective approaches in addition to complete removal of MCs in drinking water are urgently needed. In our previous work, we found that sulforaphane (SFN) protects against microcystin-LR (MC-LR)-induced cytotoxicity by activating the NF-E2-related factor 2 (Nrf2)-mediated defensive response in human hepatoma (HepG2) and NIH 3T3 cells. The purpose of this study was to investigate and confirm efficacy the SFN-induced multi-mechanistic defense system against MC-induced hepatotoxicity in an animal model. We report that SFN protected against MC-LR-induced liver damage and animal death at a nontoxic and physiologically relevant dose in BALB/c mice. The protection by SFN included activities of anti-cytochrome P450 induction, anti-oxidation, anti-inflammation, and anti-apoptosis. Our results suggest that SFN may protect mice against MC-induced hepatotoxicity. This raises the possibility of a similar protective effect in human populations, particularly in developing countries where freshwaters are polluted by blooming algae.  相似文献   

18.
19.
20.
We are currently investigating the role of detoxification pathways in protecting against the sublethal effects of chemicals in largemouth bass (Micropterus salmoides). To this end, previous work in our laboratory indicated a remarkable ability of bass liver glutathione S-transferases (GSTs) to detoxify 4-hydroxynonenal (4HNE), a common mutagenic and cytotoxic alpha,beta-unsaturated aldehyde produced during the peroxidation of lipids. In the current study, we observed that GST-mediated 4HNE conjugation in bass liver follows high efficiency single-enzyme Michaelis-Menten kinetics, suggesting that an individual GST isoform is involved in 4HNE detoxification. Using 5' and 3' rapid amplification of cDNA ends (RACE), a full-length GST cDNA of 957 base pairs (bp) in length, containing an open reading frame of 678 bp and encoding a polypeptide of 225 amino acids, has been cloned. Interestingly, a search of the BLAST protein database revealed the presence of homologous GST proteins in the plaice (Pleuronectes platessa), European flounder (Platichthys flesus) and fathead minnow (Pimephales promelas), but not in other fish species. Furthermore, the bass GST protein exhibited little homology with the mammalian GSTA4 subclass of proteins which rapidly metabolize 4HNE. The recombinant 6 x His-tagged expressed GST protein showed high catalytic activity towards 4HNE, while showing moderate or low activity toward other class specific GST substrates. HPLC-GST subunit analysis, followed by sequencing, demonstrated that the isolated bass liver GST subunit constitutes the major GST protein in bass liver, with a molecular mass of 26.4 kDa. In summary, the presence of a highly expressed GST isozyme in bass and several evolutionarily divergent fish species indicates the conservation of an important and distinct detoxification protein that protects against oxidative damage in certain aquatic organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号