首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Large-eddy simulations (LES) of flow over a series of small forested ridges are performed, and compared with numerical simulations using a one-and-a-half order mixing length closure scheme. The qualitative and quantitative similarity between these results provides some confidence in the results of recent analytical and numerical studies of flow over forested hills using first-order mixing length schemes. Time series of model velocities at various locations within the canopy allow the application of various experimental techniques to study the turbulence in the LES. The application of conditional analysis shows that the structure of the turbulence over a forested hill is broadly similar to that over flat ground, with sweeps and ejections dominating. Differences are seen across the hill, particularly associated with regions of mean flow separation and recirculation near the summit and in the lee of the hill. Detailed comparison of derived mixing lengths from the LES with the assumed values used in mixing-length closure schemes show that the mixing length varies with location across the hill and with height in the canopy. This is consistent with previous wind-tunnel measurements, and demonstrates that a constant mixing-length assumption is not strictly valid within the canopy. Despite this, the first-order mixing-length schemes do give similar results both for the mean flow and the turbulence in such situations.  相似文献   

2.
A family of wall models is proposed that exhibits moresatisfactory performance than previousmodels for the large-eddy simulation (LES) of the turbulentboundary layer over a rough surface.The time and horizontally averaged statistics such asmean vertical profiles of windvelocity, Reynolds stress, turbulent intensities, turbulentkinetic energy and alsospectra are compared with wind-tunnel experimental data.The purpose of the present study is to obtain simulatedturbulent flows that are comparable with wind-tunnelmeasurements for use as the wind environment for thenumerical prediction by LES of source dispersion in theneutral atmospheric boundary layer.  相似文献   

3.
Large-eddy simulations (LES) have been performed ofneutral turbulent flow over two-dimensional ridges steepenough to cause separation. Both periodic and isolated ridges havebeen considered. The results are compared with wind-tunnel observations and with the predictions of various turbulence closure models.For the periodic case the LES results are qualitatively reasonable,although the depth of the separated region appears to besensitive to the use of a distributed drag near the lower boundary.The isolated ridge results compare very favourably with the experimentaldata, with the LES performance appearing to be at least as good as that ofthe closure models.  相似文献   

4.
The requirements for a credible large-eddy simulation of neutral, turbulent flow over hills with an aerodynamically rough surface are discussed, in order to select a suitable case for simulation. As well as providing adequate resolution within the dynamically important inner region, obtaining a realistic upstream or undisturbed mean velocity profile is also of critical importance. A distributed drag canopy formulation has been introduced to the model to allow it to obtain such a profile while resolving very close to the rough surface. Simulations have then been performed of flow over ridges of varying heights. The results from the steepest case, which is just on the verge of separation, are compared with wind-tunnel observations. It is shown that the large-eddy simulation results are in much better agreement with the experimental data than are the results from a simple first-order mixing-length closure model. An encouraging lack of sensitivity of the simulation results to numerical resolution is also demonstrated.  相似文献   

5.
Large-Eddy Simulation Of The Stably Stratified Planetary Boundary Layer   总被引:2,自引:1,他引:2  
In this work, we study the characteristics of a stably stratifiedatmospheric boundary layer using large-eddy simulation (LES).In order to simulate the stable planetary boundary layer, wedeveloped a modified version of the two-part subgrid-scalemodel of Sullivan et al. This improved version of themodel is used to simulate a highly cooled yet fairly windy stableboundary layer with a surface heat flux of(W)o = -0.05 m K s-1and a geostrophic wind speed of Ug = 15 m s-1.Flow visualization and evaluation of the turbulencestatistics from this case reveal the development ofa continuously turbulent boundary layer with small-scalestructures. The stability of the boundary layercoupled with the presence of a strong capping inversionresults in the development of a dominant gravity wave atthe top of the stable boundary layer that appears to be relatedto the most unstable wave predicted by the Taylor–Goldsteinequation. As a result of the decay of turbulence aloft,a strong-low level jet forms above the boundary layer.The time dependent behaviour of the jet is compared with Blackadar'sinertial oscillation analysis.  相似文献   

6.
We present a numerical simulation of drag partition over rough surfaces. A computational fluid dynamics model is applied with high resolution to simulatingturbulent flows over arrays of roughness elements positioned on asmooth surface. The skin drag on the surface and the pressure drag on the roughnesselements are computed. The simulated drag partition compares well with wind-tunnelmeasurements and theoretical estimates for similar rough surfaces. This confirms that the computational approach offers an alternative to wind-tunnel and field experiments in studying drag and drag partition. The model is then applied to studying drag partition over rough surfaces with various roughness configurations. It is shown that drag partition depends not only on the magnitude of the roughness frontal area but also on the sizes and arrangement of roughness elements, because (1) the pressure drag coefficient is sensitive to roughness-element dimensions and (2) the arragement of roughness elements lead to different interferences of turbulent wakes. The impact ofthe latter factor is not insignificant.  相似文献   

7.
Large-eddy simulation is used to reproduce neutrallystratified airflow inside and immediately above a vegetation canopy. A passive scalaris released from the canopy and the evolution of scalar concentration above the canopyis studied. The most significant characteristic of the scalar concentration is the repeatedformation and dissipation of scalar microfronts, a phenomenon that has been observedin nature. These scalar microfronts consist of downstream-tilted regions of highscalar concentration gradients. Computer visualization tools and a conditional samplingand compositing technique are utilized to analyze these microfronts. Peaks in positivepressure perturbation exceeding an experimental threshold are found to be effectiveindicators of scalar microfronts. Convergence of the streamwise velocity componentand divergence of the cross-stream velocity component are observed in the immediatevicinity of scalar microfronts, which helps explain their relatively longlifetimes. Many of these three-dimensional features have been observedin previous field studies of canopy flow.  相似文献   

8.
Turbulent statistics of neutrally stratified shear-driven flow within and above a sparse forest canopy are presented from a large-eddy simulation (LES) and compared with those from observations within and above a deciduous forest with similar height and foliage density. First- and second-order moments from the LES agree with observations quite well. Third-order moments from the LES have the same sign and similar vertical patterns as those from the observations, but the LES yields smaller magnitudes of such higher-order moments. Turbulent spectra and cospectra from the LES agree well with observations above the forest. However, at the highest frequencies, the LES spectra have steeper slopes than observations. Quadrant and conditional analyses of the LES resolved-scale flow fields also agree with observations. For example, both LES and observation find that sweeps are more important than ejections for the transport of momentum within the forest, while inward and outward interaction contributions are both small, except near the forest floor. The intermittency of the transport of momentum and scalar increases with depth into the forest. Finally, ramp structures in the time series of a passive scalar at multiple levels within and above the forest show similar features to those measured from field towers. Two-dimensional (height-time cross-section) contours of the passive scalar and wind vectors show sweeps and ejections, and the characteristics of the static pressure perturbation near the ground resemble those deduced from field tower-based measurements. In spite of the limited grid resolution (2 m × 2 m × 2 m) and domain size (192 m × 192 m × 60 m) used in this LES, we demonstrate that the LES is capable of resolving the most important characteristics of the turbulent flow within and above a forest canopy.  相似文献   

9.
Large-Eddy Simulation of Stably-Stratified Flow Over a Steep Hill   总被引:1,自引:1,他引:0  
Large-eddy simulation (LES) is used to simulate stably-stratified turbulent boundary-layer flow over a steep two-dimensional hill. To parametrise the subgrid-scale (SGS) fluxes of heat and momentum, three different types of SGS models are tested: (a) the Smagorinsky model, (b) the Lagrangian dynamic model, and (c) the scale-dependent Lagrangian dynamic model (Stoll and Porté-Agel, Water Resour Res 2006, doi:). Simulation results obtained with the different models are compared with data from wind-tunnel experiments conducted at the Environmental Flow Research Laboratory (EnFlo), University of Surrey, U.K. (Ross et al., Boundary-Layer Meteorol 113:427–459, 2004). It is found that, in this stably-stratified boundary-layer flow simulation, the scale-dependent Lagrangian dynamic model is able to account for the scale dependence of the eddy-viscosity and eddy-diffusivity model coefficients associated with flow anisotropy in flow regions with large mean shear and/or strong flow stratification. As a result, simulations using this tuning-free model lead to turbulence statistics that are more realistic than those obtained with the other two models.  相似文献   

10.
Two-point space-time correlations ofvelocities, a passive scalar and static pressure arecalculated using the resolvable flow fields computedby large-eddy simulation (LES) of neutrally stratifiedflow within and above a sparse forest. Zero-time-lagspatial auto-correlation contours in thestreamwise-vertical cross-section for longitudinal andlateral velocities and for a scalar are tilted fromthe vertical in the downstream direction, as istypical in near-wall sheared flow. On the other hand,auto-correlations of vertical velocity and of staticpressure are vertically coherent. Zero-time-lagspatial auto-correlations in the spanwise-verticalcross-section show no distinct tilt, and those forboth longitudinal and vertical velocities demonstratedistinct negative side lobes in the middle forest andabove, while longitudinal velocity in the subcrowntrunk space is laterally in-phase. Static pressureperturbations appear to be spatially coherent in thespanwise direction at all heights, especially insidethe forest. Near the forest floor, longitudinalvelocity is found to be in-phase with static pressureperturbation and to be closely linked to theinstantaneous streamwise pressure gradient, supportinga previous proposal that longitudinal velocity in thisregion is dominantly modulated by the pressurepatterns associated with the coherent sweep/ejectionevents. Near treetop height, a lack of linkage betweenthe pressure gradient and the local time derivative ofthe longitudinal velocity supports the hypothesis ofadvection dominating turbulent flow.The major phase characteristics of the two-pointcorrelations essentially remained the same from fourLES runs with different domain size and/or gridresolution. A larger LES domain yielded betteragreement with field observations in a real forest onboth the magnitudes of the correlations and thesingle-point integral time scales. A finer gridresolution in the LES led to a faster rate of decreaseof correlation with increasing separation in space ortime, as did the higher frequency fluctuations in theturbulent records from field measurements. Convectivevelocities estimated from the lagged two-pointauto-correlations of the calculated flow fields werecompared with similar calculations from wind-tunnelstudies. At the canopy top, estimates from thecorrelation analyses agree with the translationvelocity estimated from instantaneous snapshots of ascalar microfront using both LES and field data. Thistranslation velocity is somewhat higher than the localmean wind speed. Convective velocities estimated fromlagged correlations increase with height above thecanopy. It is suggested that an appropriate filteringprocedure may be necessary to reduce the effects ofsmall-scale random turbulence, as was reported in astudy over an orchard canopy. The mean longitudinalvelocity near the treetops is found to be moreappropriate than the local mean longitudinal velocityat each height to link single-point integral timescales with directly calculated spatial integralstreamwise length scales.  相似文献   

11.
A parametrization method used to account for the effects of flow separation and wall roughness on the lower boundary condition for turbulent boundary layers is investigated against direct numerical simulation and laser Doppler anemometry data. The numerical simulation represents flow over a smooth, flat surface with a prescribed external adverse pressure gradient. The water-channel experiments cover flow over smooth and rough hills for two specified Reynolds numbers. Global optimization algorithms based on four different direct search methods are used to assess the parametrization function, C, in terms of local mean velocity profiles and the parametrization parameters u * (friction velocity), ∂ x p (local pressure gradient), z 0 (effective roughness) and d (zero-plane displacement). The study investigates regions of attached and reversed flows, and forty-two velocity profiles are compared with the proposed expression for the function C, including two profiles that satisfy the solution of Stratford.  相似文献   

12.
Large-Eddy Simulation of Windbreak Flow   总被引:13,自引:10,他引:3  
A large-eddy simulation has been performed of turbulent flow around multiple windbreaks set within a wheat canopy under neutral stability conditions. The simulation is validated against a wind tunnel data set taken under similar conditions. Velocity profiles and second-order statistics are presented and compared to those found in the wind tunnel. From the numerical simulation, we discuss spatial distributions of instantaneous velocity fields and pressure statistics, which are important and telling features of the flow that are difficult to measure experimentally. We present a discussion of the momentum balance at various locations with respect to the windbreak, and similarly, we introduce the budget of a passive scalar. These discussions show the importance of the terms in each budget equation as they vary upstream and downstream of the windbreak.  相似文献   

13.
Large-eddy simulations of the neutrally stratified flow over the Askervein Hill were performed, to improve the knowledge of the flow obtained from field measurements and numerical simulations with Reynolds averaged Navier-Stokes (RANS) methods. A Lagrangian dynamic subgrid model was used but, to avoid the underdissipative character near the ground, it was merged with a damped Smagorinsky model. Simulations of a flat boundary-layer flow with this subgrid model showed that the turbulent vertical motions and shear stress were better resolved using grids with a stream to spanwise aspect ratio Δx / Δy = 2 than with an aspect ratio Δx / Δy = 1. Regarding the flow over the Askervein Hill, it was found that large-eddy simulations provide an acceptable solution for the mean-velocity field and better predictions of the turbulent kinetic energy in the upstream side of the hill than the model. However, as with the model, grid convergence was not achieved in the lee side and the size of the zone with reversed flow increased with the grid refinement. Nevertheless, the existence of the intermittent separation predicted with unsteady RANS in part one of this work seems unquestionable, due to the deceleration of the flow. In our opinion, a better modelling of the decelerating boundary layer in the lee side is required to improve the results obtained using equilibrium assumptions and achieve grid convergence.  相似文献   

14.
The statistics of turbulent flow across a forest edge have been examined using large-eddy simulation, and results compared with field and wind-tunnel observations. The moorland-to-forest transition is characterized by flow deceleration in the streamwise direction, upward distortion of the mean flow, formation of a high pressure zone immediately in front of the edge, suppression of the standard deviations and covariance of velocity components, and enhancement of velocity skewnesses. For the selected forest density, it is observed that the maximum distortion angle is about 8 degrees from the horizontal. Instead of approaching a downwind equilibrium state in a monotonic manner, turbulence (standard deviations and covariances of velocity components) and mean streamwise velocity undershoot in the transition zone behind the edge. Evolution of flow statistics clearly reveals the growth of an internal boundary layer, and the establishment of an equilibrium layer downwind of the edge. It is evident that lower-order moments generally adjust more quickly over the new rough surface than do higher-order moments. We also show that the streamwise velocity standard deviation at canopy height starts its recovery over the rough surface sooner than does the vertical velocity standard deviation, but completes full adjustment later than the latter. Despite the limited domain size upstream of the edge, large-eddy simulation has successfully reproduced turbulent statistics in good agreement with field and wind-tunnel measurements.  相似文献   

15.
应用中尺度气象数值模式WRF模拟再现了2001年8月23日北京时间14时至24日00时发生在北京密云县附近的一次典型强对流风暴天气,重点发掘并分析了密云水库附近一次茁中尺度下击暴流的形成与演变过程。研究表明:(1)WRF模拟结果显示该茁中尺度下击暴流的生命期为1 h左右,水平尺度约为20 km,其水平和垂直流场与下击暴流流场的理论结构基本一致,但辐散气流流速在近地面层未能达到下击暴流定义的18 m/s;(2)模拟的下击暴流环境场中扰动位温、各水成物的比含水量与层结不稳定性以及上升气流的联系紧密,并可推断强下沉气流主要由雨水粒子拖曳作用产生,较大的位温扰动则加强了气流上升运动,迫使暖湿气块更大程度抬升,进一步维持和发展下击暴流系统。  相似文献   

16.
The flow solver “3DWind” is used to explore new aspects of the Askervein hill flow case. Previous work has investigated sensitivities to the grid, the inflow boundary profile, the roughness and the turbulence model. Several different linear and non-linear numerical models have also been validated by means of the Askervein hill case. This analysis focuses on the flow sensitivity to the grid spacing, the incident wind direction and the vertical resolution of topographic data. The horizontal resolution is found to be fine enough to cause only minor differences compared to a grid where every second node is removed. The vertical resolution dependence is mainly attributed to the wall functions. Simulations are performed for wind directions 200°, 205°, 210° and 215° at the reference station. The smallest directional biases compared to experimental values along a line through the hilltop are found for the directions 200° and 205°. There are larger wind direction changes along this line through the hilltop in the 200° case than in the 215° case. Still the simulation results give less veering than found in the experimental results, and this is maybe caused by a slightly stable atmosphere. The sensitivity to the vertical resolution of the topographical data is found to be particularly high close to the ground at the top of the hill; this is where the speed-up is most important. Differences decrease with the height from the ground. At higher levels the speed-ups are smaller and caused by terrain formations with larger scales.  相似文献   

17.
Sharp heterogeneities in forest structure, such as edges, are often responsible for wind damage. In order to better understand the behaviour of turbulent flow through canopy edges, large-eddy simulations (LES) have been performed at very fine scale (2 m) within and above heterogeneous vegetation canopies. A modified version of the Advanced Regional Prediction System (ARPS), previously validated in homogeneous conditions against field and wind-tunnel measurements, has been used for this purpose. Here it is validated in a simple forest-clearing-forest configuration. The model is shown to be able to reproduce accurately the main features observed in turbulent edge flow, especially the “enhanced gust zone” (EGZ) present around the canopy top at a few canopy heights downwind from the edge, and the turbulent region that develops further downstream. The EGZ is characterized by a peak in streamwise velocity skewness, which reflects the presence of intense intermittent wind gusts. A sensitivity study of the edge flow to the forest morphology shows that with increasing canopy density the flow adjusts faster and turbulent features such as the EGZ become more marked. When the canopy is characterized by a sparse trunk space the length of the adjustment region increases significantly due to the formation of a sub-canopy wind jet from the leading edge. It is shown that the position and magnitude of the EGZ are related to the mean upward motion formed around canopy top behind the leading edge, caused by the deceleration in the sub-canopy. Indeed, this mean upward motion advects low turbulence levels from the bottom of the canopy; this emphasises the passage of sudden strong wind gusts from the clearing, thereby increasing the skewness in streamwise velocity as compared with locations further downstream where ambient turbulence is stronger.  相似文献   

18.
一次强对流过程的三维数值模拟   总被引:12,自引:5,他引:12  
利用中国科学院大气物理研究所建立的完全弹性三维雹云数值模式(IAP-CSM3D),模拟了2004年4月23日横扫湘中湘南大部分地区的飑线强对流过程的流场、雷达回波和含水量等宏、微观物理量的分布及其演变。分析了冰雹形成的微物理过程,结果表明,冰雹粒子主要由冻滴(CNfh)和霰(CNgh)转化形成,其中冻滴的贡献比较大,冰雹主要是通过撞冻过冷水过程(CLch、CLrh)长大。将多普勒雷达实测资料同模拟的气流结构进行比较可见,雷达观测到散度随高度的变化与模式模拟的气流结构一致;模式输出的雷达回波强度及回波顶高与雷达观测事实相近。  相似文献   

19.
三维多层流过山产生的山地重力波研究   总被引:1,自引:0,他引:1  
李子良 《高原气象》2006,25(4):593-600
为了研究了三维多层气流过山产生的三维山地重力波和大气船波动力学理论,在本文中,改进了一个多层流过山的三维山地重力波的线性理论计算模式,分析了三维多层流过孤立山地产生的三维山地重力波和大气船舶波的物理机制及其表现特征。揭示了多层流过孤立地形产生发散模态和横波两种模态拦截背风波的气象条件,增强了人们对山地重力波动力学的理解和对山脉重力波及其相联系的山脉天气的预测能力。  相似文献   

20.
Large-eddy simulation (LES) is a well-established numerical technique, resolving the most energetic turbulent fluctuations in the planetary boundary layer. By averaging these fluctuations, high-quality profiles of mean quantities and turbulence statistics can be obtained in experiments with well-defined initial and boundary conditions. Hence, LES data can be beneficial for assessment and optimisation of turbulence closure schemes. A database of 80 LES runs (DATABASE64) for neutral and stably stratified planetary boundary layers (PBLs) is applied in this study to optimize first-order turbulence closure (FOC). Approximations for the mixing length scale and stability correction functions have been made to minimise a relative root-mean-square error over the entire database. New stability functions have correct asymptotes describing regimes of strong and weak mixing found in theoretical approaches, atmospheric observations and LES. The correct asymptotes exclude the need for a critical Richardson number in the FOC formulation. Further, we analysed the FOC quality as functions of the integral PBL stability and the vertical model resolution. We show that the FOC is never perfect because the turbulence in the upper half of the PBL is not generated by the local vertical gradients. Accordingly, the parameterised and LES-based fluxes decorrelate in the upper PBL. With this imperfection in mind, we show that there is no systematic quality deterioration of the FOC in the strongly stable PBL provided that the vertical model resolution is better than 10 levels within the PBL. In agreement with previous studies, we found that the quality improves slowly with the vertical resolution refinement, though it is generally wise not to overstretch the mesh in the lowest 500 m of the atmosphere where the observed, simulated and theoretically predicted stably stratified PBL is mostly located. The submission to a special issue of the “Boundary-Layer Meteorology” devoted to the NATO advanced research workshop “Atmospheric Boundary Layers: Modelling and Applications for Environmental Security”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号