首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The [N(CH3)4][N(C2H5)4]ZnCl4 compound was prepared and characterized by electrical technique. The temperature dependence of the dielectric permittivity shows that this compound is ferroelectric below T = 268 K. The two semi-circles observed in the complex impedance identify the presence of the grain interior and grain boundary contributions to the electrical response in the material. The equivalent circuit is modeled by a combination series of two parallel RP–CPE circuits. The frequency dependent conductivity is interpreted in term of Jonscher's law. The modulus plots can be characterized by the empirical Kohlrausch–Williams–Watts (K.W.W.) function: ?(t) = exp [(−t/τ)β]. The temperature dependence of the alternative current conductivity (σp), direct current conductivity (σdc) and the relaxation frequency (fp) confirm the presence of the ferroelectric–paraelectric phase transition.  相似文献   

2.
L.H. Jiang  C.Y. Li  J.Q. Hao 《Materials Letters》2007,61(29):5107-5109
Borates LiSr4(BO3)3 were synthesized by high-temperature solid-state reaction. The thermoluminescence (TL) and some of the dosimetric characteristics of Ce3+-activated LiSr4(BO3)3 were reported. The TL glow curve is composed of only one peak located at about 209 °C between room temperature and 500 °C. The optimum Ce3+ concentration is 1 mol% to obtain the highest TL intensity. The TL kinetic parameters of LiSr4(BO3)3:0.01Ce3+ were studied by the peak shape method. The TL dose response is linear in the protection dose ranging from 1 mGy to 1 Gy. The three-dimensional thermoluminescence emission spectra were also studied, peaking at 441 and 474 nm due to the characteristic transition of Ce3+.  相似文献   

3.
The kinetic properties of monoclinic lithium vanadium phosphate were investigated by potential step chronoamperometry (PSCA) and electrochemical impedance spectroscopy (EIS) method. The PSCA results show that there exists a linear relationship between the current and the square root of the time. The D?Li values of lithium ion in Li3-xV2(PO4)3 under various initial potentials of 3.41, 3.67, 3.91 and 4.07 V (vs Li/Li+) obtained from PSCA are 1.26 × 10− 9, 2.38 × 10− 9, 2.27 × 10− 9 and 2.22 × 10− 9 cm2·s− 1, respectively. Over the measuring temperature range 15-65 °C, the diffusion coefficient increased from 2.67 × 10− 8 cm2·s− 1 (at 15 °C) to 1.80 × 10− 7 cm2·s− 1 (at 65 °C) as the measuring temperature increased.  相似文献   

4.
The spectroscopic properties of Na3Gd(PO4)2 and Na3Gd(PO4)2:Ce3+ phosphors in the VUV-UV spectral range were investigated. Five excitation bands of Ce3+ ions at Gd3+ sites are observed at wavelengths of 205, 246, 260, 292, and 321 nm. Doublet Ce3+ 5d → 4f emission bands are observed at 341 and 365 nm with a decay constant τ1/e around 26 ns. The X-ray excited luminescence of Na3Gd0.99Ce0.01(PO4)2 at room temperature shows a photon yield of ∼17,000 photons/MeV of absorbed X-ray energy.  相似文献   

5.
6.
The stability of bubbles and the microstructures of sintered Si3N4 ceramic foams produced by direct foaming method were investigated. The bubbles produced by short-chain amphiphiles (propyl gallate) have higher stability as compared with that produced by long-chain surfactants (TritonX-114). Si3N4 ceramic foams using short-chain amphiphile are particle-stabilized one, the pore cells are spherical and closed, and cell surfaces are smooth and dense. The pore cells of sintered Si3N4 ceramic foams using TritonX-114 foaming are coarse and large, and pore cells are polyhedral. High gas-pressure sintering is conducive to the development of the whisker-like microstructures in Si3N4 ceramic foams. The sintered Si3N4 ceramic foams with the whisker-like microstructure are quite promising for improving the mechanical strength of the ceramics by a simple and safe way.  相似文献   

7.
Liu Changshi 《Vacuum》2003,72(1):91-95
The interfacial structures of double interfaces system of Si3N4/SiO2/Si were examined using X-ray photoelectron spectroscopy (XPS) before and after 60Co radiation. The experimental results demonstrate that there existed two interfaces, one consisted of Si3N4 and SiO2, while another was made of Si and SiO2, the interface between SiO2 and Si was extended towards the interface of the Si3N4/SiO2 meanwhile the center of the former interface was removed in the direction of the latter interface by 60Co. The concentration of silicon in the Si3N4 state (BE 101.8 eV) was decreased with the variation of radiation dosage as well as bias field within the SiO2-Si interface, remarkably. The mechanism for the experimental results is analyzed.  相似文献   

8.
The chemical diffusion of lithium ion in Li3V2(PO4)3 were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods. The CV results show that there exists a linear relationship between the peak current (ip) and the square root of the scan rate (ν1/2). The impedance spectrum exhibits a single semicircle and a straight line in a very low frequency region. A linear behavior was observed for every curve of the real resistance as a function of the inverse square root of the angular frequency in a very low frequency region. The obtained chemical diffusion coefficient from EIS measurements varies within 10− 9 to 10− 8 cm2·s− 1, in good agreement with those from CV results.  相似文献   

9.
The Cu4SO4(OH)6 was synthesized by a simple hydrothermal reaction with a yield of ~ 90%. Using Cu4SO4(OH)6 as the starting material, novel fishbone-like Cu(OH)2 was produced by a direct reaction of Cu4SO4(OH)6 with NaOH solution. The Cu(OH)2 consists of many needle-like nanorods parallel to each other and perpendicular to the direction of backbone, forming fishbone-like structure. Using the fishbone-like Cu(OH)2 as the sacrificial precursor, CuO with similar size and morphology was obtained through a simple heat treatment. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray, X-ray photoelectron spectroscopy, BET nitrogen adsorption, and UV-Vis absorption spectroscopy were employed to characterize the as-prepared samples. The conversion of the Cu4SO4(OH)6 to the fishbone-like Cu(OH)2 was visualized by time-dependent SEM images. A mechanism was also proposed based on the observed results.  相似文献   

10.
Liu Changshi 《Vacuum》2004,75(1):51-55
The first level plasmons of Si in the pure Si state, in the SiO2 state and in the Si3N4 state (corresponding to bonding energy 116.95, 122.0 and 127.0 eV) were investigated directly with X-ray photoelectron spectroscopy before and after 60Co radiation. The experimental results demonstrate that there existed two interfaces, one consisted of plasmons of Si in the Si3N4 and SiO2 states, while another was made of plasmons of Si in the pure Si state and in the SiO2 state. When the Si3N4-SiO2-Si samples were irradiated by 60Co, the interface at Si3N4/SiO2 was extended and at the same time the center of this interface moved towards the surface of Si3N4. The concentration of plasmon for silicon in the SiO2 state is decreased at the SiO2-Si interface, and the effects of radiation bias field on plasmons in the SiO2-Si interface are observable. Finally, the mechanism of experimental results is analyzed by the quantum effect of plasmon excited by the photoelectron.  相似文献   

11.
A novel composite filler alloy was developed by introducing Si3N4p (p = particles) into Ag-Cu-Ti filler alloy. The brazing of Si3N4 ceramics and TiAl intermetallics was carried out using this composite filler alloy. The typical interfacial microstructure of brazed joints was: TiAl/AlCu2Ti reaction layer/Ag(s,s) + Al4Cu9 + Ti5Si3p + TiNp/TiN + Ti5Si3 reaction layer/Si3N4. Effects of Si3N4p content in composite filler alloy on the interfacial microstructure and joining properties were investigated. The distribution of Ti5Si3p and TiNp compounds in Ag-based solid solution led to the decrease of the mismatch of the coefficient of thermal expansion (CTE) and the Young's modulus between Si3N4 and TiAl substrate. The maximum shear strength of 115 MPa was obtained when 3 wt.% Si3N4p was added in the composite filler alloy. The fracture analysis showed that the addition of Si3N4p could improve the mechanical properties of the joint.  相似文献   

12.
Li3V2−xNbx(PO4)3/C cathode materials were synthesized by a sol-gel method. X-ray diffraction patterns demonstrated that the appropriate addition of Nb did not destroy the lattice structure of Li3V2(PO4)3, and enlarged the unit cell volume, which could provide more space for lithium intercalation/de-intercalation. Transmission electron microscopy and energy dispersive X-ray spectroscopy analysis illustrated that Nb could not only be doped into the crystal lattice, but also form an amorphous (Nb, C, V, P and O) layer around the particles. As the cathode materials of Li-ion batteries, Li3V2−xNbx(PO4)3/C (x ≤ 0.15) exhibited higher discharge capacity and better cycle stability than the pure one. At a discharge rate of 0.5C, the initial discharge capacity of Li3V1.85Nb0.15(PO4)3/C was 162.4 mAh/g. The low charge-transfer resistances and large lithium ion diffusion coefficients confirmed that Li3V2−xNbx(PO4)3/C samples possessed better electronic conductivity and lithium ion mobility. These improved electrochemical performances can be attributed to the appropriate amount of Nb doping in Li3V2(PO4)3 system by enhancing structural stability and electrical conductivity.  相似文献   

13.
Thermal stability of the TiAlN/Si3N4 nanoscale multilayered coating that was reported to show excellent hardness and toughness, has been investigated in terms of the nano-layered structure and hardness. TiAlN/Si3N4 nanoscale multilayered coatings with various thickness of Si3N4 layer were prepared by alternating deposition of TiAlN and Si3N4. In contrast to other nanoscale multilayered coating system such as AlN/CrN in which the intensity of the low angle XRD peaks decreases with increasing annealing temperature by interdiffusion between adjacent layers, the low angle XRD peak intensity of the nanoscale multilayered TiAlN/Si3N4 coatings increased after heat-treatment in an N2 atmosphere up to 800 °C. Such a thermal stability of the nano-layered structure is believed to be due to spinodal type phase separation of TiAlN and Si3N4, which increased the hardness value of the TiAlN/Si3N4 coating at high temperatures.  相似文献   

14.
Trivalent thulium-doped K5Bi(MoO4)4 single crystals were grown by the Czochralski method. Its polarized absorption and fluorescence spectra and fluorescence decay curves were recorded at room temperature. On the basis of the Judd-Ofelt theory, the spectral parameters of the Tm3+:K5Bi(MoO4)4 crystal were calculated. The cross relaxations between Tm3+ ions were analyzed. The emission cross sections of the 3F4 → 3H6 transition were obtained by the Fuchtbauer-Ladenburg formula and then the gain cross sections around 1.9 μm were calculated. The peak emission cross section and width of emission band around 1.9 μm are comparable to those for Tm3+:YAG and the tunable range is about 280 nm for the potential ∼1.9 μm laser operation via the 3F4 → 3H6 transition.  相似文献   

15.
CVD-TiSiN may be promising material for O2 diffusion-barrier films in ultra-large scale integrated (ULSI) circuit applications, especially for dynamic random-access memory (DRAM) capacitors. We developed a method for introducing Si into TiN, which is a common material used for diffusion-barrier films. TiSiN films were deposited by reacting TiCl4, SiH4, and NH3 in a hot-wall CVD reactor. We measured TiSiN film deposition rates, composition, crystal structure, and resistivity as a function of SiH4 partial pressure. Adding Si to TiN converts the TiN film structure from columnar grains to columnar-free structure films, thereby effectively removing the diffusion paths for O2. The resistivity of TiSiN films was increased by adding SiH4 to the reactant gas. With an increase in SiH4 partial pressure up to PSiH4=0.8 Torr, the resistivity gradually increased, but for PSiH4=1.2 Torr, the phase present in the film was almost SiN and its resistivity jumped up. TiSiN film rapid thermal annealing was performed to evaluate the anti-oxidation performance at the temperature range from 400 to 600 °C in 100 Torr of O2. For an increase the Si concentration up to 4.4 at.% improved anti-oxidation performance of TiSiN films. Flow modulation chemical vapor deposition (FMCVD) was used to create TiSiN films with low Cl concentration and improved anti-oxidation performance.  相似文献   

16.
张昌松  刘强  陈威 《材料导报》2016,30(5):81-88
Si3N4/hBN复相陶瓷凭借优良的综合力学性能,逐渐成为人们研究的热点。从制备工艺和性能出发阐述了国内外Si3N4/hBN复相陶瓷的研究现状,分析了各种制备方法的优缺点以及hBN含量对Si3N4/hBN复相陶瓷的可加工性能、力学性能、介电性能、摩擦学性能的影响,并指出简化工艺、降低烧结温度、hBN含量与性能定量表征等可能是今后的发展方向。  相似文献   

17.
We deposited silicon nitride films by alternating exposures to Si2Cl6 and NH3 in a cold-wall reactor, and the growth rate and characteristics were studied with varying process temperature and reactant exposures. The physical and electrical properties of the films were also investigated in comparison with other silicon nitride films. The deposition reaction was self-limiting at process temperature of 515 and 557 °C, and the growth rates were 0.24 and 0.28 nm/cycle with Si2Cl6 exposure over 2 × 108 L. These growth rates with Si2Cl6 are higher than that with SiH2Cl2, and are obtained with reactant exposures lower than those of the SiH2Cl2 case. At process temperature of 573 °C where the wafer temperature during Si2Cl6 pulse is 513 °C, the growth rate increased with Si2Cl6 exposure owing to thermal deposition of Si2Cl6. The deposited films are nonstoichiometric SiN, and were easily oxidized by air exposure to contain 7-8 at.% of oxygen in the bulk film. The deposition by using Si2Cl6 exhibited a higher deposition rate with lower reactant exposures as compared with the deposition by using SiH2Cl2, and exhibited good physical and electrical properties that were equivalent or superior to those of the film deposited by using SiH2Cl2.  相似文献   

18.
We have taken advantage of congruent melting behavior of the nonlinear rare-earth oxoborate Ca4REO(BO3)3 family to perfect a process of collective fabrication of self-frequency doubling microchip laser based on Nd:GdCOB (Ca4Gd1−xNdxO(BO3)3) crystals. The process goes from Czochralski boule to 1 × 3 mm2 chips perfectly oriented (better than 0.1°) to the phase matching direction (θ=90°, φ=46°) in the XY principal plane, with dielectric mirrors directly deposited on both faces of the chips. 20 mW of self-frequency doubling output power at 530 nm was performed under 800 mW of diode laser as incident pump power at 812 nm. In addition, new compositions from the solid solution Ca4Gd1−xYxO(BO3)3 (Gd1−xYxCOB) (x=0.13, 0.16, 0.44) have been grown by the Czochralski pulling method, in order to achieve noncritical phase matching (NCPM) second harmonic generation of 4F3/2 → 4I9/2 Nd3+ doped laser hosts. Three types of laser wavelengths have been chosen: Nd:YAP (YAlO3) at 930 nm, Nd:YAG (Y3Al5O12) at 946 nm, and Nd:ASL (NdySr1−x LaxyMgx Al12−xO19) at 900 nm. Angular acceptance measurements of these three types of compositions present very large values, compared to pure GdCOB or YCOB oriented in critical phase matching configurations.  相似文献   

19.
Thermoelectric solid solutions of Bi2 (Te1−xSex)3 with x = 0, 0.2, 0.4, 0.6, 0.8 and 1 were grown using the Bridgman technique. Thin films of these materials of different compositions were prepared by conventional thermal evaporation of the prepared bulk materials. The temperature dependence of the electrical conductivity σ, free carriers concentration n, mobility μH, and seebeck coefficient S, of the as-deposited and films annealed at different temperatures, have been studied at temperature ranging from 300 to 500 K. The temperature dependence of σ revealed an intrinsic conduction mechanism above 400 K, while for temperatures less than 400 K an extrinsic conduction is dominant.The activation energy, ΔE, and the energy gap, Eg, were found to increase with increasing Se content. The variation of S with temperature revealed that the samples with different compositions x are degenerate semiconductors with n-type conduction. Both, the annealing and composition effects on Hall constant, RH, density of electron carriers, n, Hall mobility, μH, and the effective mass, m/m0 are studied in the above temperature range.  相似文献   

20.
In order to prepare a structural/functional material with not only higher mechanical properties but also lower dielectric constant and dielectric loss, a novel process combining oxidation-bonding with sol–gel infiltration-sintering was developed to fabricate a porous Si3N4–SiO2 composite ceramic. By choosing 1250 °C as the oxidation-bonding temperature, the crystallization of oxidation-derived silica was prevented. Sol–gel infiltration and sintering process resulted in an increase of density and the formation of well-distributed micro-pores with both uniform pore size and smooth pore wall, which made the porous Si3N4–SiO2 composite ceramic show both good mechanical and dielectric properties. The ceramic with a porosity of 23.9% attained a flexural strength of 120 MPa, a Vickers hardness of 4.1 GPa, a fracture toughness of 1.4 MPa m1/2, and a dielectric constant of 3.80 with a dielectric loss of 3.11 × 10−3 at a resonant frequency of 14 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号