首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the first fully implanted InP junction field-effect transistor (JFET) with an abrupt p+-n junction. The device was made on a semi-insulating InP substrate with Si++implant for the n-channel and Be/P co-implant for the p+-region. A novel self-aligned process was used to reduce the gate-source spacing and thus minimize the series resistance. Good pinch-off characteristics and very low gate leakage current were obtained. The extrinsic transconductance is approximately 40 mS/mm for a gate length of 5 µm and a channel doping of 6 × 1016/cm3.  相似文献   

2.
InGaAs junction field-effect transistors (JFETs) are fabricated in metalorganic chemical-vapor-deposition (MOCVD)-grown n-InGaAs and semi-insulating Fe:InP layers on n+-InP substrate with a P/Be co-implanted p+ self-aligned gate. The device exhibits a transconductance of 245 mS/mm (intrinsic transconductance of 275 mS/mm) at zero gate bias and good pinch-off behavior for a gate length of 0.5 μm. The effective electron velocity is deduced to be 2.8×107 cm/s, equal to the theoretical prediction  相似文献   

3.
p+-AlInAs/InP junction field-effect transistors (FETs) have been fabricated in semi-insulating InP:Fe using ion implantation and a selective molecular-beam epitaxy (MBE) technique. Current-voltage measurements on 4.0-μm gate-length devices show a zero-gate-bias transconductance of 41 mS/mm, and RF measurements indicate a unity-power-gain frequency of 3.2 GHz. These results indicate that the selective growth method is a viable technique for fabricating high-frequency, high-power junction FETs in the InP-based materials system  相似文献   

4.
Depletion-mode junction field-effect transistors (JFET's) with InGaAs p-n junctions grown on compensated Fe:InP or highly resistive In0.52Al0.48As isolation layers grown on n+-InP substrates have been fabricated using a combination of molecular-beam epitaxy and metalorganic chemical vapor deposition growth techniques. Using a self-aligned gate technology with a 1-µm gate length, devices with high transconductance (80 mS/mm), low leakage current (<100 nA), and a gate-to-source capacitance of 0.4 pF have been fabricated. This is apparently the first report where InP-based alloy FET's have been fabricated on an isolated n+-substrate. This structure has application to monolithically integrated photoreceivers.  相似文献   

5.
Ge-channel modulation-doped field-effect transistors (MODFET's) with extremely high transconductance are reported. The devices were fabricated on a compressive-strained Ge/Si0.4Ge0.6 heterostructure with a Hall mobility of 1750 cm2/Vs (30,900 cm2/Vs) at room temperature (77 K). Self-aligned, T-gate p-MODFET's with Lg=0.1 μm displayed an average peak extrinsic transconductance (g(mext)) of 439 mS/mm, at a drain-to-source bias voltage (Vds) of -0.6 V, with the best device having a value of g(mext)=488 mS/mm. At 77 K, values as high as g(mext)=687 mS/mm were obtained at a bias voltage of only Vds=-0.2 V. These devices also displayed a unity current gain cutoff frequency (fT) of 42 GHz and maximum frequency of oscillation (fmax) of 86 GHz at Vds=-0.6 V and -1.0 V, respectively  相似文献   

6.
P-channel and n-channel heterostructure field effect transistors (HFETs) have been simultaneously fabricated by one-step molecular beam epitaxial growth of Si-doped Al0.2Ga0.8As/GaAs heterostructures on patterned (100) GaAs substrates. The p-HFETs were made on the etched (311)A facets and the n-HFETs on the planar (100) surface. A transconductance value of 23 mS/mm at 300 K for a p-HFET with a 1.1×50-μm gate is measured. The same size n-HFET made with the same structure and same level of Si doping has a transconductance value of 250 mS/mm at room temperature  相似文献   

7.
An In0.52Al0.48As/n+-In0.53Ga0.47As MIS-type field-effect transistor (FET) with a channel doped at a 7 × 1017cm-3level has been fabricated on an InP substrate. A device with a 2-µm channel length has yielded a maximum transconductance of 152 mS/mm,f_{T} = 12.4GHz, andf_{max} = 50GHz. At 10 GHz, the maximum available gain is 17.4 dB. The performance of this device shows that heavily doped channel FET's are very promising for high-frequency operation.  相似文献   

8.
We describe the operation of an n-channel inversion-mode In0.53Ga0.47As MISFET with a Si3N4insulating layer. This device exhibits a transconductance of 2 mS/mm, which represents an order of magnitude improvement over previously reported In0.53Ga0.47As MISFET results.  相似文献   

9.
SiO2 insulator is on top of an InP layer; current transport occurs, however, an in adjacent n-type Ga0.47In0.53As:Sn layer. A transconductance of gm=300 mS/mm is obtained from depletion-mode MISFETs with a gate length of 1.2 μm. This MIS (metal-insulator-semiconductor) junction has a symmetric current-voltage characteristic and a low-leakage current of ~1 nA at ±2 V. High-frequency S-parameter measurements performed b probing devices on the wafers yield a unity current gain frequency of F t=22.2 GHz and a maximum frequency of oscillation f max=27 GHz  相似文献   

10.
We describe a self-aligned, refractory metal gate contact, enhancement mode, GaAs junction field effect transistor (JFET) where all impurity doping was done by ion implantation. Processing conditions are presented for realizing a high gate turn-on voltage (~1.0 V at 1 mA/mm of gate current) relative to GaAs MESFET's. The high gate turn-on voltage is the result of optimizing the p+-gate implant and anneal to achieve a nonalloyed ohmic contact between the implanted p+-GaAs and the sputter deposited tungsten gate contact. Initial nominally 1.0 μm×50 μm n-JFET's have a transconductance of 85 mS/mm and ft of 11.4 GHz  相似文献   

11.
We have successfully fabricated FET's with In0.53Ga0.47As channels, lattice-matched In0.52Al0.48As gate barriers, and n+ In0.53- Ga0.47As gates. For a barrier thickness of 600 Å and a gate length of 1.7 µm, the maximum transconductance is 250 mS/mm at T = 300 K. From gate capacitance measurements, the cutoff frequency is inferred to be ft= 15 GHz for this gate length. Self-aligned source and drain implants have been used to permit nonalloyed ohmic contacts with a characteristic resistance of 0.1 Ω.mm. The transconductance remains above 210 mS/mm for forward gate bias up to +1.0 V, confirming the usefulness of this gate structure for enhancement-mode devices.  相似文献   

12.
Monolithic integration of enhancement (E)- and depletion (D)-mode metamorphic In0.52Al0.48As/In0.53Ga0.47 As/GaAs HEMTs with 0.35 μm gate-length is presented for the first time. Epilayers are grown on 3-inch SI GaAs substrates using molecular beam epitaxy. A mobility of 9550 cm2/V-s and a sheet density of 1.12×1012 -2 are achieved at room temperature. Buried Pt-gate was employed for E-mode devices to achieve a positive shift in the threshold voltage. Excellent characteristics are achieved with threshold voltage, maximum drain current, and extrinsic transconductance of 100 mV, 370 mA/mm and 660 mS/mm, respectively for E-mode devices, and -550 mV, 390 mA/mm and 510 mS/mm, respectively for D-mode devices. The unity current gain cutoff frequencies of 75 GHz for E-mode and 80 GHz for D-mode are reported  相似文献   

13.
Operation of the first AlSbAs/GaSb p-channel modulation-doped field-effect transistor (MODFET) is reported. Devices with 1-μm gate length exhibit transconductance of 30 and 110 mS/mm at room temperature and 80 K, with respective maximum drain current densities of 25 and 80 mA/mm. The low field Hall mobility and sheet carrier density of this modulation doped structure were 260 cm2/V-s and 1.8×10 12 cm-2 at room temperature and 1700 cm2/V-s and 1.4×1012 cm-2 at 77 K. Calculations based on these results indicate that room-temperature transconductances of 200 mS/mm or greater could be achieved. This device can be integrated with an InAs n-channel HFET for complementary circuit applications  相似文献   

14.
Using strained aluminum-rich In0.45Al0.55As as Schottky contact materials to enhance the barrier height and indium-rich In0.75Ga0.25As as channel material to enhance the channel performance, we have developed InP-based enhancement-mode pseudomorphic InAlAs/InGaAs high electron mobility transistors (E-PHEMT's) with threshold voltage of about 170 mv. A maximum extrinsic transconductance of 675 mS/mm and output conductance of 15 mS/mm are measured respectively at room temperature for 1 μm-gate-length devices, with an associated maximum drain current density of 420 mA/mm at gate voltage of 0.9 V. The devices also show excellent rf performance with cutoff frequency of 55 GHz and maximum oscillation frequency of 62 GHz. To the best of the authors' knowledge, this is the first time that InP-based E-PHEMT's with strained InAlAs barrier layer have been demonstrated  相似文献   

15.
Quantum-well p-channel pseudomorphic AlGaAs/InGaAs/GaAs heterostructure insulated-gate field-effect transistors with enhanced hole mobility are described. The devices exhibit room-temperature transconductance, transconductance parameter, and maximum drain current as high as 113 mS/mm, 305 mS/V/mm, and 94 mA/mm, respectively, in 0.8-μm-gate devices. Transconductance, transconductance parameter, and maximum drain current as high as 175 mS/mm, 800 mS/V/mm, and 180 mA/mm, respectively were obtained in 1-μm p-channel devices at 77 K. From the device data hole field-effect mobilities of 860 cm2/V-s at 300 K and 2815 cm2/V-s at 77 K have been deduced. The gate current causes the transconductance to drop (and even to change sign) at large voltage swings. Further improvement of the device characteristics may be obtained by minimizing the gate current. To this end, a type of device structure called the dipole heterostructure insulated-gate field-effect transistor is proposed  相似文献   

16.
New In0.52Al0.48As/In0.53Ga0.47 As transferred-substrate high electron mobility transistors (TS-HEMTs) have been successfully fabricated on 2-in Silicon substrate with 0.12 μm T-shaped gate length. These new TS-HEMTs exhibit typical drain currents of 450 mA/mm and extrinsic transconductance up to 770 mS/mm. An extrinsic current gain cutoff frequency fT of 185 GHz is obtained. That result is the first reported for In0.52Al0.48As/In0.53Ga0.47 As TS-HEMTs on Silicon substrate  相似文献   

17.
InGaAs junction field-effect transistors (JFET's) with 1-µm gate length were successfully fabricated with an n+-InGaAs active layer (8 × 1016cm-3) and an undoped InGaAs buffer layer grown on semi-insulating InP:Fe substrate by liquid-phase epitaxy. The device showed good pinch-off behavior with a threshold voltage of 0.25 V, a low drain current of 1 µA at zero gate-source voltage, and a very high transconductance of 553 mS/mm at room temperature. This is one of the highest transconductance values ever reported for a 1-µm gate-length FET.  相似文献   

18.
Metal insulator semiconductor field effect transistors (MISFETs) and MIS capacitors are fabricated using Al metal-gate and PECVD silicon nitride (Si3N4) gate-insulator on commercial GaAs epitaxial wafers after treating the channel regions with (NH4)2Sx. It is shown that the post metallization annealing (PMA) of these devices improves the transconductance and reduces the interface state density (Dit) considerably. This is attributed to the additional passivation effect of hydrogen diffusing to the interface from the Si 3N4 during the PMA. An intrinsic transconductance of 30.7 mS/mm which is 75% of the theoretical maximum limit of 40.5 mS/mm has been achieved using silicon nitride gate insulator thickness of 1100 Å. Stability of the drain currents in these devices is demonstrated to be excellent  相似文献   

19.
This letter describes high electron mobility transistors (HEMT's) utilizing a conducting channel which is a single In0.15Ga0.85AS quantum well grown pseudomorphically on a GaAs substrate. A Hall mobility of 40 000 cm2/V.s has been observed at 77 K. Shubnikov-de Haas oscillations have been observed at 4.2 K which verify the existence of a two-dimensional electron gas at the In0.15Ga0.85As/GaAs interface. HEMT's fabricated with 2-µm gate lengths show an extrinsic transconductance of 90 and 140 mS/mm at 300 and 77 K, respectively-significantly larger than that previously reported for strained-layer superlattice InxGa1-xAs structures which are nonpseudomorphic to GaAs substrates. HEMT's with 1-µm gate lengths have been fabricated, which show an extrinsic transconductance of 175 mS/mm at 300 K which is higher than previously reported values for both strained and unstrained InxGa1-xAs FET's. The absence of AlxGa1-xAs in these structures has eliminated both the persistent photoconductivity effect and drain current collapse at 77 K.  相似文献   

20.
The fabrication, structure, and properties of unstrained modulation-doped, 1-μm-long and 10-μm-wide gate, field effect transistors made of In0.3Ga0.7As/In0.29As0.71As heterojunctions grown on GaAs substrates using compositionally step-graded buffer layers are described. These devices have a transconductance of 335 mS/mm, fmax of 56 GHz, and a gate breakdown voltage of 23.5 V  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号