首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes nanometer-scale bending tests of fixed single-crystal silicon (Si) and silicon dioxide (SiO2) nanobeams using an atomic force microscope (AFM). The technique is used to evaluate elastic modulus of the beam materials and bending strength of the beams. Nanometer-scale Si beams with widths ranging from 200 to 800 nm were fabricated on a Si diaphragm using field-enhanced anodization using an AFM followed by anisotropic wet etching. Subsequent thermal oxidation of Si beams was carried out to create SiO2 beams. Results from the bending tests indicate that elastic modulus values are comparable to bulk values. However, the bending strength appears to be higher for these nanoscale structures than for large-scale specimens. Observations of the fracture surface and calculations of the crack length from Griffith's theory appear to indicate that the maximum peak-to-valley distance on the beam top surfaces influence the values of the observed bending strengths.  相似文献   

2.
Results are presented of lateral force measurements using the atomic force microscope (AFM) and the surface forces apparatus (SFA). Two different probes are used in the AFM measurements; a sharp silicon nitride tip (radius R20 nm) and a glass ball (R15 m). The lateral force is measured between the (silicon nitride or glass) probe and a mica surface which has been coated by a thin lubricant film. In the SFA, a thin lubricant film separates two molecularly smooth mica surfaces (R1 cm) which are slid relative to each other. Perfluoropolyether (PFPE) and polydimethylsiloxane (PDMS) were used as the lubricant films. In the SFA where the contact diameter is largest, the PFPE film shows much lower friction than PDMS. As the size of the probe decreases, the difference in the measured friction decreases. For sharp AFM tips, no clear distinction between the tribological properties of the films can be made. Hence, the measured coefficient of friction varies according to the length scale probed, at least for small dimensions.  相似文献   

3.
The atomic force microscope (AFM) can provide qualitative information by numerous imaging modes, but it can also provide quantitative information when calibrated cantilevers are used. In this article a new technique is demonstrated to calibrate AFM cantilevers using a reference piezolever. Experiments are performed on 13 different commercially available cantilevers. The stiff cantilevers, whose stiffness is more than 0.4 N/m, are compared to the stiffness values measured using nanoindentation. The experimental data collected by the piezolever method is in good agreement with the nanoindentation data. Calibration with a piezolever is fast, easy, and nondestructive and a commercially available AFM is enough to perform the experiments. In addition, the AFM laser must not be calibrated. Calibration is reported here for cantilevers whose stiffness lies between 0.08 and 6.02 N/m.  相似文献   

4.
By controlling the interaction between the atomic force microscope tip and mica, patterns of different sizes and shape have been produced on the surface of mica. Using these operator-constructed patterns as a reliable marker, the original scanned sample location can be re-located and imaged again on the same mica surface by atomic force microscopy (AFM). This location technique can be used to find the same object again even if the sample was removed from the AFM instrument or the sample was imaged in a different mode.  相似文献   

5.
原子力显微镜在聚合物研究中的应用   总被引:1,自引:2,他引:1  
原子力显微镜以其分辨率高、样品无需特殊制备、实验可在大气环境中进行等优点而广泛应用于聚合物研究之中,弥补扫描隧道显微镜不能观测非导电样品的缺憾。近年来,其应用已由对聚合物表面几何形貌的观测发展到纳米级结构和表面性能的研究领域。在介绍原子力显微镜工作原理的基础上,简要回顾其在聚合物研究方面的若干新应用,并对其应用前景作展望。  相似文献   

6.
Recently, the manipulation of a single cell has been receiving much attention in transgenesis, in-vitro fertilization, individual cell based diagnosis, and pharmaceutical applications. As these techniques require precise injection and manipulation of cells, issues related to penetration force arise. In this work the penetration force of living cell was studied using an atomic force microscope (AFM). L929, HeLa, 4T1, and TA3 HA II cells were used for the experiments. The results showed that the penetration force was in the range of 2∼22 nN. It was also found that location of cell penetration and stiffness of the AFM cantilever affected the penetration force significantly. Furthermore, double penetration events could be detected, due to the multi-membrane layers of the cell. The findings of this work are expected to aid in the development of precision micro-medical instruments for cell manipulation and treatment. This paper was presented at the 9th Asian International Conference on Fluid Machinery (AICFM9), Jeju, Korea, October 16–19, 2007.recommended for publication in revised form by Associate Editor Keum-Sik Hong Eun-Young Kwon received her B.S. and M.S degrees in Mechanical Engineering from Yonsei University, Korea, in 2005 and 2007, respectively. Ms. Kwon is currently an Engineer at Digital Printing Division of Samsung Electronics. Her research interests include biotribology, tribology, and electrophotography. Young-Tae Kim received his B.S. in Automotive Engineering from Seoul National University of Technology, Korea, in 2003. He then received his M.S. degree from Yonsei University in Seoul, Korea in 2005. Mr. Kim is currently a Ph. D. candidate at the Graduate School of Mechanical Engineering at Yonsei University in Seoul, Korea. His research interests include biotribology, tribology, and biomechanics. Dae-Eun Kim received his B.S. in Mechanical Engineering from Tufts University, USA, in 1984. He then received his M.S. and Ph.D. degrees from M.I.T. in 1986 and 1991, respectively. Dr. Kim is currently a Professor at the School of Mechanical Engi-neering at Yonsei University in Seoul, Korea. His research interests include tribology, functional surfaces, and micromachining.  相似文献   

7.
The diverse atomic configurations induce the anisotropic surface properties. For investigating anisotropic phenomena, we developed a rotational positioning system adapted to atomic force microscope (AFM). This rotational positioning system is applied to revolve the measured sample to defined angular direction, and it composed of an inertial rotational stepper and a visual angular measurement. The inertial rotational stepper with diameter 30 mm and height 7.6 mm can be easily attached to the AFM-system built in any general optical microscope. Based on a clearance less bearing and the inertial driving method, its bidirectional angular resolution reaches 0.005° per step. For realizing a close-loop controlled angular positioning function, the visual measurement method is utilized. Through the feedback control, the angular positioning error is less than 0.01°. For verifying the system performance, we used it to investigate the anisotropic surface properties of graphite. Through a modified cantilever tip, the atomic-scale stick-slip, and the anisotropic friction phenomena can be distinctly detected.  相似文献   

8.
This paper describes the use of a standard stereo-pair image display method for presenting the three-dimensional relief information found in atomic force microscope (AFM) images. The method makes use of commercially available image processing software packages. The techniques are illustrated on AFM images of the cuticle structure of a human hair fibre.  相似文献   

9.
This paper presents a simple and reliable technique for nanometer-scale layer modification of a polycarbonate (PC) surface using an atomic force microscope (AFM). The AFM tip, coated with amorphous carbon was made to oscillate vertically at its resonance frequency. With tip oscillating in tapping mode, it scan-scratched the PC surface to make the desired modification. This action carved the PC surface without distorting it. The bottom of the depression made by scan-scratching with the oscillating tip was obviously flat in comparison with the area scan-scratched without tip oscillation in contact mode. The depth of the scan-scratched depression was controlled by adjusting the amplitude of oscillation and the scanning speed of scratching. This technique is very interesting for microtribology and surface modification.  相似文献   

10.
Zhang T  Chao Y  Shih K  Li XY  Fang HH 《Ultramicroscopy》2011,111(2):131-139
To determine the lateral detachment force for individual bacterial cells, a quantitative method using the contact mode of an atomic force microscope (AFM) was developed in this study. Three key factors for the proposed method, i.e. scan size, scan rate and cantilever choice, were evaluated and optimized. The scan size of 40×40 μm2 was optimal for capturing sufficient number of adhered cells in a microscopic field and provide adequate information for cell identification and detachment force measurement. The scan rate affected the measurement results significantly, and was optimized at 40 μm/s considering both force measurement accuracy and experimental efficiency. The hardness of applied cantilevers also influenced force determination. The proposed protocol for cantilever selection is to use those with the lowest spring constant first and then step up to a harder cantilever until all cells are detached. The lateral detachment force of Escherichia coli cells on polished stainless steel and a glass-slide coated with poly-l-lysine were measured as 0.763±0.167 and 0.639±0.136 nN, respectively. The results showed that the established method had good repeatability and sensitivity to various bacteria/substrata combinations. The detachment force quantified by AFM (0.639±0.136 nN) was comparable to that measured by the centrifugation method (1.12 nN).  相似文献   

11.
Gibson CT  Carnally S  Roberts CJ 《Ultramicroscopy》2007,107(10-11):1118-1122
In atomic force microscopy (AFM) the accuracy of data is often limited by the tip geometry and the effect on this geometry of wear. One way to improve the tip geometry is to attach carbon nanotubes (CNT) to AFM tips. CNTs are ideal because they have a small diameter (typically between 1 and 20nm), high aspect ratio, high strength, good conductivity, and almost no wear. A number of methods for CNT attachment have been proposed and explored including chemical vapour deposition (CVD), dielectrophoresis, arc discharge and mechanical attachment. In this work we will use CVD to deposit nanotubes onto a silicon surface and then investigate improved methods to pick-up and attach CNTs to tapping mode probes. Conventional pick-up methods involve using standard tapping mode or non-contact mode so as to attach only those CNTs that are aligned vertically on the surface. We have developed improved methods to attach CNTs using contact mode and reduced set-point tapping mode imaging. Using these techniques the AFM tip is in contact with a greater number of CNTs and the rate and stability of CNT pick-up is improved. The presence of CNTs on the modified AFM tips was confirmed by high-resolution AFM imaging, analysis of the tips dynamic force curves and scanning electron microscopy (SEM).  相似文献   

12.
Techniques for broadside coupling to long-range surface plasmon waves propagating along metal stripes are investigated. The baseline technique consists of evanescently coupling an optical input beam originating from a polarization maintaining fiber to the plasmon wave via a right-angle prism positioned above the metal stripe, and providing an optical output some distance away through a mirror arrangement of identical elements. The technique is modeled theoretically using plane waves and implemented to measure the attenuation of the long-range plasmon wave propagating along a metal stripe supported by a thin freestanding dielectric membrane. An alternative technique for providing an output is proposed, whereby a tipless atomic force microscope probe physically contacts the metal stripe to generate out-of-plane scattering and a multimode fiber positioned nearby is used to capture a portion of the scattered light. This technique is easier to implement than the baseline technique, resulting in attenuation measurements of significantly better quality. The goodness of fit of the best fitting linear models to the measurements was significantly improved using this technique (0.93 and 0.99), and the measured attenuations were in very good agreement with the theoretical ones (6.01% and 0.27% error). This simple technique for optical probing and coupling could be applied to other surface plasmon waveguides and possibly to dielectric waveguides with modes having sufficient field strength in their evanescent tail. Output scattering using micron-sized particles located on the metal stripe was also investigated. The stability of the experimental setup was assessed and found to be about 0.01 dB peak to peak over a few minutes at constant temperature using a reference optical signal.  相似文献   

13.
Liu H  Bhushan B 《Ultramicroscopy》2004,100(3-4):391-412
Texas Instruments’ digital micromirror device (DMD) comprises an array of fast digital micromirrors, monolithically integrated onto and controlled by an underlying silicon memory chip. The DMD is one of the few success stories in the emerging field of MEMS. In this study, an atomic force microscope (AFM) has been used to characterize the nanotribological properties of the elements of the DMD. An AFM methodology was developed to identify and remove micromirrors of interest. The surface roughness, adhesion, friction, and stiffness properties of the DMD elements were studied. The influence of relative humidity and temperature on the behavior of the DMD element surfaces was also investigated. Potential mechanisms for wear and stiction are discussed in light of the findings.  相似文献   

14.
张虎  张冬仙  黄峰 《光学仪器》2003,25(3):7-10
简要介绍了原子力显微镜的工作原理 ,着重分析了液相探头的设计 ,并利用该探头进行了液相环境的样品表面形貌测量 ,给出了测量的图像。实验表明 ,该液相探头具有良好的液态环境扫描性能 ,图像稳定 ,分辨力高。  相似文献   

15.
Measurements of atomic friction in the atomic force microscope frequently show periodic variations at the lattice spacing of the surface being scanned, which have the saw‐tooth wave form characteristic of “stick–slip” motion. Simple models of this behaviour have been proposed, in which the “dynamic element” of the system is provided by the elastic stiffness and inertia of the cantilever which supports the tip of the microscope, in its lateral, i.e., torsional mode of vibration. These models have been successful in predicting the observed motion, but only by assuming that the cantilever is heavily damped. However, the source of this damping in a highly elastic cantilever is not explained. To resolve the paradox, it is shown in this note that it is necessary to introduce the elastic stiffness of the contact into the model. The relationship between the contact stiffness, the cantilever stiffness and the amplitude of the periodic friction force is derived in order for stick–slip motion at lattice spacing to be achieved. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Visualization of cytoskeletal elements by the atomic force microscope   总被引:6,自引:0,他引:6  
We describe a novel application of atomic force microscopy (AFM) to directly visualize cytoskeletal fibers in human foreskin epithelial cells. The nonionic detergent Triton X-100 in a low concentration was used to remove the membrane, soluble proteins, and organelles from the cell. The remaining cytoskeleton can then be directly visualized in either liquid or air-dried ambient conditions. These two types of scanning provide complimentary information. Scanning in liquid visualizes the surface filaments of the cytoskeleton, whereas scanning in air shows both the surface filaments and the total "volume" of the cytoskeletal fibers. The smallest fibers observed were ca. 50 nm in diameter. The lateral resolution of this technique was ca.20 nm, which can be increased to a single nanometer level by choosing sharper AFM tips. Because the AFM is a true 3D technique, we are able to quantify the observed cytoskeleton by its density and volume. The types of fibers can be identified by their size, similar to electron microscopy.  相似文献   

17.
原子力显微镜在DNA领域中研究应用   总被引:4,自引:1,他引:4  
郑伟民  蔡继业 《现代仪器》2006,12(1):9-12,18
原子力显微镜(AFM)是研究DNA有力工具,在对DNA研究中有其独特优势。本文概述原子力显微镜DNA研究中应用以及取得进展。虽然原子力显微镜在研究DNA研究中仍有局限性,但随着原子力显微技术及相关技术发展,原子力显微镜在DNA中研究必将不断深入。  相似文献   

18.
The direct observation of individual molecules in action is required for a better understanding of the mechanisms of biological reactions. We used a high-speed atomic force microscope (AFM) in solution to visualize short DNA fragments in motion. The technique represents a new approach in analyzing molecular interactions, and it allowed us to observe real-time images of biotinylated DNA binding to/dissociating from streptavidin protein. Our results show that high-speed AFMs have the potential to reveal the mechanisms of molecular interactions, which cannot be determined by analyzing the average value of mass reactions.  相似文献   

19.
Torsional harmonic cantilevers allow measurement of time-varying tip-sample forces in tapping-mode atomic force microscopy. Accuracy of these force measurements is important for quantitative nanomechanical measurements. Here we demonstrate a method to convert the torsional deflection signals into a calibrated force wave form with the use of nonlinear dynamical response of the tapping cantilever. Specifically the transitions between steady oscillation regimes are used to calibrate the torsional deflection signals.  相似文献   

20.
We present calibration results of commercial AFM cantilevers using the KRISS nanoforce calibrator (NFC) that can determine traceably spring constants with an uncertainty better than 1%, along with the results obtained from other four calibration methods: the dimensional method, the cantilever-on-cantilever method, the Sader method, and the thermal noise method. Two types (contact and tapping mode) of beam-shaped AFM cantilevers with nominal spring constants of 0.9 N m−1 and 42 N m−1, respectively, were investigated in this study. Because of its small uncertainty, the NFC method was used to assess the uncertainties of other four methods through comparisons between values obtained from other methods and those from the NFC method for the same cantilever. Results from other methods were generally in good agreement with those from the NFC method within the uncertainties of other methods claimed in other literatures, but values obtained from the Sader method were differed by up to 40% from the NFC values, which is 2 times worse than the known uncertainty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号