首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A program for Monte Carlo simulation of ion transport in non-linear ion mobility spectrometry, also known as field asymmetric ion mobility spectrometry (FAIMS) or differential mobility spectrometry (DMS), has been developed. Simulations are based on elastic collisions between the ions and the gas particles, and take into account the effects of flow dynamics and asymmetric electric fields. Using this program, the separation and diffusion of the ions moving in a planar DMS filtration gap are demonstrated. Ion focusing in a cylindrical filtration gap is also confirmed. A characteristic compensation voltage is found to provide insight for understanding separation in non-linear ion mobility spectrometry. The simulation program is used to study the characteristics of non-linear ion mobility spectrometry, the effect of the carrier gas flow, and the dependence of the compensation voltage and nonlinear mobility coefficient (α) on the applied asymmetric electric field.  相似文献   

2.
The electric field dependence of the mobilities of gas-phase protonated monomers [(MH+(H2O)n] and proton-bound dimers [M2H+(H2O)n] of organophosphorus compounds was determined at E/N values between 0 and 140 Td at ambient pressure in air with moisture between 0.1 and 15 000 ppm. Field dependence was described as alpha (E/N) and was obtained from the measurements of compensation voltage versus field amplitude in a planar high-field asymmetric waveform ion mobility spectrometer. The alpha function for protonated monomers to 140 Td was constant from 0.1 to 10 ppm moisture in air with onset of effect at approximately 50 ppm. The value of alpha increased 2-fold from 100 to 1000 ppm at all E/N values. At moisture values between 1000 and 10 000 ppm, a 2-fold or more increase in alpha (E/N) was observed. In a model proposed here, field dependence for mobility through changes in collision cross sections is governed by the degree of solvation of the protonated molecule by neutral molecules. The process of ion declustering at high E/N values was consistent with the kinetics of ion-neutral collisional periods, and the duty cycle of the waveform applied to the drift tube. Water was the principal neutral above 50 ppm moisture in air, and nitrogen was proposed as the principal neutral below 50 ppm.  相似文献   

3.
A model for the drift of ions under a non-uniform, high-frequency electric field in the drift chamber of a spectrometer of ion mobility increment is developed. For the general dependence of the ion mobility on the electric field strength and the general time-dependence of the separating voltage, we suggest a procedure for calculating of the ion peak form. The shape of the peak for the ion focusing and defocusing conditions has been obtained.  相似文献   

4.
A liquid chromatography/high-field asymmetric waveform ion mobility spectrometry/tandem mass spectrometry (LC-FAIMS-MS/MS) semi-quantitative method was developed for the simultaneous determination of prostaglandin (PG) E2, PGD2, PGF(2alpha), 6-keto-PGF(1alpha), and thromboxane (TX) B2. Diluted samples containing these prostanoids and their tetra-deuterium-substituted internal standards were analyzed by LC followed by either selected reaction monitoring (LC-SRM) or FAIMS and selected reaction monitoring (LC-FRM). FAIMS reduced background noise, separated the isobaric ions PGE2 and PGD2, and separated dynamically interchanging TXB2 anomers. This is the first report of the separation of interconverting anomers by FAIMS. Generally, the LC-FRM chromatograms were more selective than the LC-SRM chromatograms. Its potential was demonstrated by analysis of prostanoids in guinea pig lumbar spinal cord homogenate.  相似文献   

5.
Despite the recent, successful efforts to detect mycotoxins, new methods are still required to achieve higher sensitivity, more simplicity, higher speed, and higher accuracy at lower costs. This paper describes the determination of ochratoxin A (OTA) using corona discharge ion mobility spectrometry (IMS) in the licorice root. A quick screening and measuring method is proposed to be employed after cleaning up the extracted OTA by immunoaffinity columns. The ion mobility spectrometer is used in the inverse mode to better differentiate the OTA peak from the neighboring ones. After optimization of the experimental conditions such as corona voltage, injection port temperature, and IMS cell temperature, a limit of detection (LOD) of 0.010 ng is obtained. Furthermore, the calibration curve is found to be in the range of 0.01-1 ng with a correlation coefficient (R2) of 0.988. Licorice roots were analyzed for their OTA content to demonstrate the capability of the proposed method in the quantitative detection of OTA in real samples.  相似文献   

6.
Ion mobility spectrometry is increasingly in demand for medical applications and its potential for implementation in food quality and safety or process control suggest rising use of instruments in this field as well. All those samples are commonly extremely complex and mostly humid mixtures. Therefore, pre-separation techniques have to be applied. As ion mobility spectrometers with gas-chromatographic pre-separation acquire a huge amount of data, effective data processing and automated evaluation by comparison of detected peak pattern with data bases have to be utilised. This requires accurate on-line calibration of the instruments to guarantee reproducible results, in particular with respect to identification of an analyte by determination of its ion mobility and retention time. To reduce environmental and instrumental influence, the reduced ion mobility is used. It is derived from the drift time normalised to electric field, length of the drift region and to temperature and pressure of the drift gas (traditional method). All data required for this normalisation are afflicted with a particular error and thus leading to a deviation of the calculated ion mobility value. Furthermore, this traditional method enables a calculation of the reduced ion mobility only after the measurement. To avoid those errors and to enable on-line calibration of ion mobility, an instrument specific factor is implemented generally representing all relevant variables. This factor can be determined from an initial measurement of few spectra and can thereafter be applied on the following measurement. The application of this approach obtained reproducible reduced ion mobility values for positive and negative ions over a broad drift time range and for common variation of ambient conditions as well for varying instrument conditions such as electric fields respectively drift times and in different drift gases. Moreover, the reduced ion mobility is available already during the measurements with a significantly higher reliability and accuracy which was increased to a factor of 5 compared to the traditional ion mobility determination and enables an on-line identification of analytes for the first time.  相似文献   

7.
The dependence of the mobilities of gas-phase ions on electric fields from 0 to 90 Td at ambient pressure was determined for protonated monomers [(MH+(H2O)n] and proton bound dimers [M2H+(H2O)n] for a homologous series of normal ketones, from acetone to decanone (M=C3H6O to C10H20O). This dependence was measured as the normalized function of mobility alpha (E/N) using a planar field asymmetric waveform ion mobility spectrometer (PFAIMS) and the ions were mass-identified using a PFAIMS drift tube coupled to a tandem mass spectrometer. Methods are described to obtain alpha (E/N) from the measurements of compensation voltage versus amplitude of an asymmetric waveform of any shape. Slopes of alpha for MH+ versus E/N were monotonic from 0 to 90 Td for acetone, butanone, and pentanone. Plots for ketones from hexanone to octanone exhibited plateaus at high fields. Nonanone and decanone showed plots with an inversion of slope above 70 Td. Proton bound dimers for ketones with carbon numbers greater than five exhibited slopes for alpha versus E/N, which decreased continuously with increasing E/N. These findings are the first alpha values for ions from a homologous series under atmosphere pressure and are preliminary to explanations of alpha (E/N) with ion structure.  相似文献   

8.
A dynamic method is applied to measure the mobility of gas-phase ions in the dual ion funnel interface of the electrospray source of a quadrupole orthogonal time-of-flight mass spectrometer. In a new operational mode, a potential barrier was formed in the second ion funnel of the mass spectrometer and then progressively increased. In this region, a flow of gas drags the ions into the mass spectrometer while the electric force applied by the potential barrier decelerates them. Ions with lower mobility can be carried by the gas flow more easily than those with high mobility. Thus, electrical forces can block the more mobile ions more easily. Hence, the electric barrier formed in the ion funnel permits only ions below a certain mobility threshold to enter the mass spectrometer. When the barrier voltage is increased, this threshold moves from high to low mobilities. Ions with mobilities above the threshold cannot enter the mass spectrometer, and their signal decreases to zero. Thus, in a barrier voltage scan, mass spectrometric signals of ions sequentially disappear. Differentiation of these decreasing ion signal curves produces peaks from which an ion mobility spectrum can be reconstructed. Blocking voltages, i.e., the positions of the peaks on the barrier voltage scale are directly related to the mobility of these ions. An internal calibration using ions with known mobility values helps determine the unknown ion mobilities and allows calculation of ionic cross sections.  相似文献   

9.
A novel surface ionization source for ion mobility spectrometer   总被引:1,自引:0,他引:1  
A surface ionization (SI) source is designed and prepared for ion mobility spectrometer (IMS). The source acts not only as an emitter but also an ion injector which can inject ions periodically into the drift region of drift tube. Using the dual-role source, the dimension of the drift tube can be decreased and the circuit for high voltage can be simplified efficiently. The IMS with the SI source has a response range of ∼4 orders of magnitude and a good reproducibility to tri-ethylamine. Compared with radioactive ionization (RI), the ultra-short time for ion injection and the zero level base line of ion mobility spectrum are characteristics of the surface ionization.  相似文献   

10.
The capability of corona-discharge ion mobility spectrometry (CD-IMS) in the quantitative determination of acetone has been evaluated. Generally, in IMS the signal intensity of a product ion is not a linear function of the sample concentration. A linear calibration curve was, however, obtained by plotting ln(R0+/R0+-P+) against acetone concentration, where, R0+ is the original reactant ion density and P+ is the sum of all the product ion densities. The acetone detection limit was 60 ng m(-3) and its dynamic range was three orders of magnitude.  相似文献   

11.
An ion mobility spectrometer that can easily be installed as an intermediate component between a commercial triple-quadrupole mass spectrometer and its original atmospheric pressure ionization (API) sources was developed. The curtain gas from the mass spectrometer is also used as the ion mobility spectrometer drift gas. The design of the ion mobility spectrometer allows reasonably fast installation (about 1 h), and thus the ion mobility spectrometer can be considered as an accessory of the mass spectrometer. The ion mobility spectrometer module can also be used as an independently operated device when equipped with a Faraday cup detector. The drift tube of the ion mobility spectrometer module consists of inlet, desolvation, drift, and extraction regions. The desolvation, drift and extraction regions are separated by ion gates. The inlet region has the shape of a stainless steel cup equipped with a small orifice. Ion mobility spectrometer drift gas is introduced through a curtain gas line from an original flange of the mass spectrometer. After passing through the drift tube, the drift gas serves as a curtain gas for the ion-sampling orifice of the ion mobility spectrometer before entering the ion source. Counterflow of the drift gas improves evaporation of the solvent from the electrosprayed sample. Drift gas is pumped away from the ion source through the original exhaust orifice of the ion source. Initial characterization of the ion mobility spectrometer device includes determination of resolving power values for a selected set of test compounds, separation of a simple mixture, and comparison of the sensitivity of the electrospray ionization ion mobility spectrometry/mass spectrometry (ESI-IMS/MS) mode with that of the ESI-MS mode. A resolving power of 80 was measured for 2,6-di-tert-butylpyridine in a 333 V/cm drift field at room temperature and with a 0.2 ms ion gate opening time. The resolving power was shown to be dependent on drift gas flow rate for all studied ion gate opening times. Resolving power improved as the drift gas flow increased, e.g. at a 0.5 ms gate opening time, a resolving power of 31 was obtained with a 0.65 L/min flow rate and 47 with a 1.3 L/min flow rate for tetrabutylammonium iodide. The measured limits of detection with ESI-MS and with ESI-IMS/MS modes were similar, demonstrating that signal losses in the IMS device are minimal when it is operated in a continuous flow mode. Based on these preliminary results, the IMS/MS instrument is anticipated to have potential for fast screening analysis that can be applied, for example, in environmental and drug analysis.  相似文献   

12.
A new robust method of electromembrane‐surrounded solid‐phase microextraction coupled to ion mobility mass spectrometry was applied for nonsteroidal anti‐inflammatory drugs determination in complex matrices. This is the first time that a graphene/polyaniline composite coating is applied in electromembrane‐surrounded solid‐phase microextraction method. The homemade graphene/polyaniline composite is characterized by a high electrical conductivity and thermal stability. The variables affecting electromembrane‐surrounded solid‐phase microextraction, including extraction time; applied voltage and pH were optimized through chemometric methods, central composite design, and response surface methodology. Under the optimized conditions, limits of detection of 0.04 and 0.05 ng/mL were obtained for mefenamic acid and ibuprofen, respectively. The feasibility of electromembrane‐surrounded solid‐phase microextraction followed by ion mobility mass spectrometry was successfully confirmed by the extraction and determination of low levels of ibuprofen and mefenamic acid in human urine and plasma samples and satisfactory results were obtained.  相似文献   

13.
Excluding the ion source, an ion mobility spectrometer is fundamentally comprised of drift chamber, ion gate, pulsing electronics, and a mechanism for amplifying and recording ion signals. Historically, the solutions to each of these challenges have been custom and rarely replicated exactly. For the IMS research community few detailed resources exist that explicitly detail the construction and operation of ion mobility systems. In an effort to address this knowledge gap we outline a solution to one of the key aspects of a drift tube ion mobility system, the ion gate pulser. Bradbury-Nielsen or Tyndall ion gates are found in nearly every research-grade and commercial IMS system. While conceptually simple, these gate structures often require custom, high-voltage, floating electronics. In this report we detail the operation and performance characteristics of a wifi-enabled, MOSFET-based pulser design that uses a lithium-polymer battery and does not require high voltage isolation transformers. Currently, each output of this circuit follows a TTL signal with ~20 ns rise and fall times, pulses up to +/? 200 V, and is entirely isolated using fiber optics. Detailed schematics and source code are provided to enable continued use of robust pulsing electronics that ease experimental efforts for future comparison.  相似文献   

14.
The performance of three different types of ion mobility spectrometer (IMS) devices: GDA2 with a radioactive ion source (Airsense, Germany), UV-IMS with a photo-ionization source (G.A.S. Germany) and VG-Test with a corona discharge source (3QBD, Israel) was studied. The gas-phase ion chemistry in the IMS devices affected the species formed and their measured reduced mobility values. The sensitivity and limit of detection for trimethylamine (TMA), putrescine and cadaverine were compared by continuous monitoring of a stream of air with a given concentration of the analyte and by measurement of headspace vapors of TMA in a sealed vial. Preprocessing of the mobility spectra and the effectiveness of multivariate curve resolution techniques (MCR-LASSO) improved the accuracy of the measurements by correcting baseline effects and adjusting for variations in drift time as well as enhancing the signal to noise ratio and deconvolution of the complex data matrix to their pure components. The limit of detection for measurement of the biogenic amines by the three IMS devices was between 0.1 and 1.2 ppm (for TMA with the VG-Test and GDA, respectively) and between 0.2 and 0.7 ppm for putrescine and cadaverine with all three devices. Considering the uncertainty in the LOD determination there is almost no statistically significant difference between the three devices although they differ in their operating temperature, ionization method, drift tube design and dopant chemistry. This finding may have general implications on the achievable performance of classic IMS devices.  相似文献   

15.
High‐field asymmetric waveform ion mobility spectrometry (FAIMS) separates ions by utilizing the characteristics of nonlinear ion mobility at high and low electric fields. Accurate ion discrimination depends on the precise solution of nonlinear relationships and is essential for accurate identification of ion species for applications. So far, all the nonlinear relationships of ion mobility obtained are based at low electric fields (E/N <65 Td). Microchip FAIMS (μ‐FAIMS) with small dimensions has high electric field up to E/N = 250 Td, making the approximation methods and conclusions for nonlinear relationships inappropriate for these systems. In this paper, we deduced nonlinear functions based on the first principle and a general model. Furthermore we considered the hydrodynamics of gas flow through microchannels. We then calculated the specific alpha coefficients for cocaine, morphine, HMX, TNT and RDX, respectively, based on their FAIMS spectra measured by μ‐FAIMS system at ultra‐high fields up to 250 Td. The results show that there is no difference in nonlinear alpha functions obtained by the approximation and new method at low field (<120 Td), but the error induced by using approximation method increases monotonically with the increase in field, and could be as much as 30% at a field of 250 Td. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Methyl tertiary-butyl ether (MTBE) is an organic compound which is used as a gasoline additive. Contamination of ground and surface water can occur due to large scale use of MTBE and its high solubility in water. According to United State Environmental Protection Agency (USEPA), MTBE is a possible human carcinogen at high doses and its detection and measurement in the water is important as concerned about human health. In this work, ion mobility spectrometry (IMS) equipped with a corona discharge ionization source was used for determination of MTBE in drinking water. Both pure and aqueous solutions of MTBE were studied and their ion mobility spectra were obtained at different temperatures. Using a calibration curve for detection of MTBE in drinking water, a detection limit (LOD) of 1 mg/L was obtained by IMS. This work proved that, IMS with corona discharge can be used for fast and direct detection of MTBE in water sample without any sample preparation.  相似文献   

17.
Using a simple ion source set-up, laser desorption/ionization on silicon (DIOS) was demonstrated with the use of a custom-made drift tube ion mobility spectrometer (IMS), mounted on a commercial triple quadrupole mass spectrometer, and with an IMS equipped with a Faraday plate detector. DIOS was tested by mobility measurement of tetrapropylammonium iodide, tetrabutylammonium iodide and tetrapentylammonium iodide, whilst 2,6-di-tert- butylpyridine was used as a standard. The reduced mobilities measured for the test halides are in concordance with previously obtained ion mobility spectrometry-mass spectrometry data.  相似文献   

18.
Differential mobility spectrometry or field asymmetric waveform ion mobility spectrometry (FAIMS) is a new tool for separation and identification of gas-phase ions, particularly in conjunction with mass spectrometry. In FAIMS, ions are filtered by the difference between mobilities in gases (K) at high and low electric field intensity (E) using asymmetric waveforms. An infinite number of possible waveform profiles make maximizing the performance within engineering constraints a major issue for FAIMS technology refinement. Earlier optimizations assumed the non-constant component of mobility to scale as E(2), producing the same result for all ions. Here we show that the optimum profiles are defined by the full series expansion of K(E) that includes terms beyond the first that is proportional to E(2). For many ion/gas pairs, the first two terms have different signs, and the optimum profiles at sufficiently high E in FAIMS may differ substantially from those previously reported, improving the resolving power by up to 2.2 times. This situation arises for some ions in all FAIMS systems, but becomes more common in recent miniaturized devices that employ higher E. With realistic K(E) dependences, the maximum waveform amplitude is not necessarily optimum, and reducing it by up to approximately 20% to 30% is beneficial in some cases. The present findings are particularly relevant to targeted analyses where separation depends on the difference between K(E) functions for specific ions.  相似文献   

19.
The effect of space charge on the ion beam in a spectrometer of ion mobility increment with the planar drift chamber has been investigated. A model for the drift of ions under a non-uniform high-frequency electric field(1-3) has been developed recently. We have amplified this model by taking space charge effect into account. The ion peak shape taking into consideration the space charge effect is obtained. The output current saturation effect limiting the rise of the ion peak with increasing ion density at the input of the drift chamber of a spectrometer is observed. We show that the saturation effect is caused by the following phenomenon. The maximum possible output ion density exists, depending on the ion type (constant ion mobility, k(0)) and the time of the motion of ions through the drift chamber. At the same time, the ion density does not depend on the parameters of the drift chamber.  相似文献   

20.
The overall objective of this project was to develop an analytical method that utilizes structure selective ion molecule interactions (SSIMI) in ion mobility spectrometry (IMS) to shift the mobility of a targeted analyte through the addition of a gas phase modifier to the buffer gas. IMS is a sensitive, rapid method for the detection of harmful chemicals; however false alarm responses do occur and a reduction in their frequency decrease both the cost and time required for detection. The investigation reported here probed the effects of a series of buffer gas modifiers on the mobilities of chemical warfare agent simulants (CWAs), toxic industrial chemicals (TICs) and a known interference (butyl carbitol) found in fire extinguishing agents. The major finding of this research was that a modifier with a proton affinity similar to, but not greater than, the target analyte produced the greatest changes in mobilities due to the formation of an ion cluster between the neutral modifier and target analyte ion. Mass spectrometry was utilized to confirm the formation of ion-neutral clusters that caused the target ion to shift its mobility. While a number of modifiers were screened, acetonitrile and isobutyronitrile were found to have sufficiently selective SSIMI with the target compound. For example, in the presence of acetonitrile modifier, the protonated response ion of the CWA simulant DMMP, [DMMP]H+, had a mobility shift of 10.8 %, but the mobility was unchanged for the interferent, butyl carbitol. The mobility of the simulant DMMP decreased with the introduction of modifiers, while the mobility of the interference did not change, demonstrating the potential of the SSIMI technique for reducing false alarm rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号