首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
侯高强  李明 《润滑与密封》2020,45(6):95-100
为研究新型混合槽水润滑橡胶轴承的润滑特性,采用有限元法建立了橡胶轴承的热流固耦合模型,在考虑不同进水温度和不同转速的条件下,分析了混合槽橡胶轴承与带有T形、V形沟槽的橡胶轴承在衬层变形、水膜压力、流场速度等方面的差异。结果表明:混合槽橡胶轴承能较好地适应水温的变化,解决了T形、V形沟槽橡胶轴承存在的衬层变形大、水膜压力较低的问题,并改善了单一槽型轴承承压区压力峰值急剧变化的问题;随着进水温度的升高,衬层变形量和水膜压力均减小,承载力下降,而且较高转速下承载力的下降趋势比低转速下更为明显;随着进水水温的升高,水的黏性系数持续降低,橡胶轴承的润滑状态变差,轴承润滑状态由混合润滑和弹流润滑状态过渡到完全混合润滑状态。  相似文献   

2.
3.
为了研究沟槽结构对船用水润滑轴承润滑特性的影响机制,采用有限元法,通过对简化后的椭圆形沟槽的二维模型进行流体动力学CFD分析,从迹线以及涡流等方面分析沟槽结构参数对沟槽内部流体特征的影响,得到不同状态下沟槽内部的压力轮廓,并分析沟槽结构参数对水润滑轴承摩擦因数的影响和轴承的润滑机制。结果表明:沟槽的大小影响轴承间隙内流体的流通面积,沟槽的结构特征影响沟槽内的流体黏度。研究结果可为水润滑轴承优化设计提供参考。  相似文献   

4.
在线接触热弹流润滑的基础上,对水润滑塑料轴承的热弹流模型进行计算,研究轴瓦的力学性能对水润滑塑料轴承润滑性能的影响,分析不同弹性模量下的压力、膜厚、最高温升曲线和温度分布。结果表明:在载荷等满足要求时,应选择弹性模量小的材料;载荷很大时,应选择弹性模量大的材料;弹性模量很大的材料,材料改性重点是增加自润滑性能和增加热传导系数。  相似文献   

5.
在考虑橡胶轴瓦弹性变形基础上,建立水润滑轴承的弹流润滑模型并进行数值计算,从理论上分析水润滑橡胶层厚度对轴承弹流润滑性能的影响。结果表明:一定范围内,相同材料不同厚度的橡胶轴瓦对水润滑轴承水膜压力和厚度有着较大影响。随着橡胶层厚度的增加,水膜压力减小,水膜厚度增加,弹流润滑效果越好;相应地,水润滑轴承所承受的摩擦力会减少,摩擦因数会出现降低的趋势。  相似文献   

6.
利用考虑热效应的Reynolds方程,对水润滑条件下的飞龙轴承进行考虑热效应时的弹流润滑理论分析。通过数值模拟讨论载荷、转速和轴径对水润滑膜压力及膜厚的影响。结果表明:热效应对水润滑膜压力的影响几乎可以不计,而膜厚减小;随载荷增大,压力峰值有所增大,膜厚随载荷的增大而减小;随转速的增大压力峰值减小,而膜厚随转速的增大而增大;轴径的大小对压力的影响不明显,但随轴径的增大膜厚减小。  相似文献   

7.
8.
建立水润滑塑料合金轴承的数学模型,对水润滑条件下塑料合金轴承的弹流润滑问题进行数值模拟,讨论转速和载荷对水润滑膜压力和膜厚的影响。结果表明:在水润滑条件下,转速对水润滑膜的压力影响不明显,而膜厚及最小膜厚随转速的增大而明显增大;随载荷的增大,压力峰值有明显增大,而在入口区压力随载荷增大而减小,膜厚及最小膜厚随载荷增大而减小。  相似文献   

9.
为研究船舶工况参数对可倾瓦推力轴承稳态和瞬态润滑特性的影响,利用Matlab建立船舶可倾瓦推力轴承热弹流体动压润滑计算模型,考虑轴瓦的热弹性变形,联立黏温方程、能量方程、油膜刚度和阻尼系数方程求解模型,研究热弹性变形以及不同载荷和转速情况下船舶可倾瓦推力轴承的润滑特性。结果表明:考虑热弹性变形时,最小油膜厚度增大,最大油膜压力和最高油膜温度降低;在正常运行工况条件下,轴瓦的热弹性变形有利于改善推力轴承的润滑性能,轴承设计时应考虑材料的抗压性和耐热性;在转速不变时随着载荷的增大,最小油膜厚度降低,最大油膜压力、温度、油膜刚度和阻尼均增加,需要特别注意重载工况下轴承的动压润滑状况;在载荷相同的情况下,随着转速的提高,油膜厚度和油膜温度增大,油膜压力变化不明显,油膜刚度和阻尼随转速增大而降低,在转速较低时下降较为明显。研究结果为优化轴承设计、提高轴承运行的可靠性和稳定性提供参考。  相似文献   

10.
刘刚  李明  何琳 《润滑与密封》2016,41(2):59-64
引入双雷诺边界条件研究水润滑橡胶轴承的弹流润滑特性。采用"负压充零"算法实现双雷诺边界条件,比较双雷诺边界条件和雷诺边界条件下水膜压力分布、承载力及摩擦力等的差异。结果表明:双雷诺边界条件下水膜起始位置比雷诺边界条件提前,水膜区域范围扩大,起始边界为抛物线形而非直线;在水膜破裂区,2种边界条件下的压力分布情况相近;在破裂区以外的区域,双雷诺边界条件下的水膜压力比雷诺边界条件下的大;由于水膜起始区和破裂区的水膜压力部分抵消,双雷诺边界条件下的承载力与雷诺边界条件下的承载力相差不大;双雷诺边界条件下的偏位角大于雷诺边界条件下的偏位角,摩擦力大于雷诺边界条件下的摩擦力。  相似文献   

11.
脂润滑轮毂轴承弹流润滑数值分析   总被引:4,自引:1,他引:3  
基于Ostwald模型建立脂润滑控制方程,运用多重网格法求得等温线接触脂润滑弹性流体动力润滑数值解,得到钢球-沟道的压力分布、油膜形状及最小油膜厚度。针对轿车轮毂轴承的典型应用工况条件,分析工况参数对油膜压力分布和油膜形状的影响。结果表明:脂润滑弹流膜具有与油润滑膜相同的二次压力峰和出口颈缩现象。在轿车轮毂轴承可能的承载条件下,随着载荷的减小,二次压力峰的高度降低,其位置向入口区移动;一定承载条件下,速度增加时,膜厚相应增加,油膜的平行部分缩短,二次压力峰的高度增加,其位置也向入口区移动;一定承载和卷吸速度下,润滑脂流变参数增大时,二次压力峰的高度升高,其位置向入口区移动,膜厚相应增加。  相似文献   

12.
杨浩  欧阳武  金勇  邹群 《润滑与密封》2023,48(11):45-50
为了揭示表面粗糙度对船舶水润滑高分子材料轴承润滑性能的影响规律,开展水润滑轴承弹流混合润滑理论研究;建立考虑内衬材料粗糙度和弹性变形的水润滑轴承混合润滑模型,并对模型进行仿真验证;分析内衬粗糙峰对水膜厚度、水膜压力分布和承载能力的影响规律。研究结果表明:在转速增大的过程中,内衬粗糙度的增大会减缓水膜厚度的增幅比,使轴承需要更高的转速来进入流体动压润滑状态;减小轴承内衬粗糙度能有效降低轴承起飞转速,加快轴承由混合润滑转变为流体动压润滑的过程,减小轴承与轴颈的局部接触,降低轴承异常振动噪声发生的可能性。研究结果揭示了内衬粗糙度变化对轴承润滑特性的影响机制,为水润滑轴承的优化设计提供理论参考。  相似文献   

13.
水润滑飞龙轴承的微观热弹流润滑分析   总被引:1,自引:0,他引:1  
考虑温度场和轴承表面连续余弦波状粗糙度的影响,对水润滑飞龙轴承进行弹流润滑分析;通过数值分析方法求得轴承的完全数值解;分析粗糙度函数的幅值和波长对压力、膜厚的影响。结果表明:考虑表面连续波状粗糙度时压力和膜厚出现波动,最小膜厚减小;粗糙度函数幅值增大,压力变化不明显,膜厚波动增大,最小膜厚减小;粗糙度函数波长增大,压力波动增大,膜厚变化不大。  相似文献   

14.
针对纤维填料改性UHMWPE水润滑轴承的摩擦磨损性能进行研究。在平面摩擦磨损试验机上对玻璃纤维及碳纤维填料对UHMWPE复合材料摩擦性能进行试验,并分析GF-CF-UHMWPE材料与Thordon SXL材料在干摩擦、水润滑工况下的摩擦因数及磨损量。最后,采用径向水润滑轴承试验台对比研究了GF-CF-UHMWPE轴承和Thordon SXL轴承在不同载荷下摩擦因数随转速的变化规律。结果表明:纤维填料能显著增强UHMWPE的减摩性和耐磨性,GF-CF-UHMWPE材料具有更好的耐温性能,线性热膨胀系数也显著减小;GF-CF-UHMWPE轴承具有相同载荷下启动转速低,启动摩擦因数小的特性。  相似文献   

15.
针对传统拟静力学分析方法未考虑轴承套圈热变形、离心力变形和弹流润滑作用引起轴承内部沟道曲率中心与滚动体中心几何位置关系的变化,难以准确反映轴承动刚度不足的现状,建立了计入套圈变形和弹流润滑影响的轴承拟静力学修正模型。采用所建立的模型研究了轴承不同工作转速和预紧力条件下轴承热变形、离心力变形和润滑油膜对动刚度的影响规律,通过与Gupta等典型算例及实验的对比验证,证实了所建立模型及分析结果的有效性。  相似文献   

16.
曹中文 《轴承》2012,(1):25-28
以某型直列四缸发动机为研究对象,对曲轴主轴承进行弹性流体动压润滑分析。考虑非线性连接,采用多体动力学软件建立润滑仿真模型对曲轴主轴承进行动力学润滑计算。通过对最小油膜厚度、最大摩擦接触应力和磨损进行分析,揭示了设计中存在的隐患,为该型发动机曲轴主轴承的优化设计提供了参考依据。  相似文献   

17.
针对某型柴油机功率提升后主轴承润滑性能出现恶化的现象,计及表面形貌和弹性变形等因素影响,建立12V150柴油机主轴承润滑分析模型。运用弹性流体润滑、轴承动力学及Greenwood-Tripp微凸峰接触理论,分析功率提升后的主轴承润滑性能,提出需要改进的参数。分析表明:主轴承润滑性能变差的原因主要是功率提升后,曲轴和主轴承承受载荷加剧,油膜压力增加,引起轴颈弯曲或倾斜,导致主轴最小油膜度减小。研究曲轴平衡率、轴承宽度和润滑油黏度等参数对主轴承润滑性能的影响,提出了将曲轴平衡率由70%增大至90%,轴承宽度由46 mm增大至48 mm,并合理增加润滑油黏度的改进方案。结果表明:曲轴平衡率能有效地减小主轴颈倾斜角度,而轴承宽度和润滑油黏度对轴颈倾斜几乎没有影响;改进后主轴承最小油膜厚度提升了16.08%,峰值粗糙接触压力减小了37.11%,平均摩擦损失总功减小了13.08%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号