首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
目的解决航空铝合金薄壁波纹板爆炸成形工艺成形效率低且成形质量差的问题。方法提出了3种充液成形工艺方案,利用有限元分析软件对3种成形方案进行了对比分析,并且对最优方案进行了试验验证。结果有限元分析结果显示,双面加压充液成形方法能够使零件的各部分变形均匀,避免了在充液成形过程中因摩擦力作用导致的局部变形过大产生的开裂,有效地提高了材料的成形能力。结论双面加压充液成形方法能够成形出轮廓精度高、表面质量好的铝合金薄壁波纹板。  相似文献   

2.
铝合金矩形截面管充液成形工艺研究   总被引:3,自引:3,他引:0       下载免费PDF全文
目的研究低延伸率和低厚向异性指数的铝合金管,在充液成形过程中的材料变形行为。方法采用低压预成形的方法来改善管坯材料的流动,并与传统不带内压的预成形结果进行了对比。结合有限元分析手段研究了铝管弯曲过程管坯尺寸、弯曲半径的选择对零件壁厚分布的重要性。结果有限分析方法结合试验研究表明,低压预成形可以有效抑制铝合金弯曲轴线管件的开裂。结论初始管材截面外壁周长应等于或略小于模具截面内壁周长;弯曲半径的选取要兼顾弯曲工艺难度和管坯贴模度;低压预成形能够大大改善矩形截面过渡圆角区的材料流动,避免破裂、死皱等典型缺陷的发生。  相似文献   

3.
充液成形技术能有效解决复杂零件的成形问题.针对某飞机薄壁深腔蒙皮常规拉深成形需要多道次成形、成形质量差的问题,通过分析充液成形过程中易出现的失稳,设计了带部分阴模的一模两件充液成形的技术方案.结合数值模拟,对薄壁深腔件充液成形过程中出现的悬空区失稳形式进行了研究,优化了液室压力加载曲线、压边间隙、初始反胀压力等工艺参数.结果表明,薄壁深腔件在带部分阴模的一模两件的工艺方案下,能有效避免悬空区的起皱,同时改善了一模一件补充段的破裂问题,提高了零件成形极限和壁厚分布的均匀性.  相似文献   

4.
目的 解决薄壁水槽盒形件刚性拉深一序底部圆角减薄过大、整体厚度减薄严重以致后续拉深二序、三序成形后产品厚度不合格的问题,同时解决工艺路线的退火问题。方法 利用有限元分析软件Dynaform对薄壁水槽充液拉深一序进行数值模拟分析,研究关键工艺参数对成形结果的影响规律,并得出最优的工艺参数,最后与刚性拉深的模拟结果对比分析,提出充液拉深方法的可行性。结果 根据工艺优化方案,得出最优工艺参数:预胀压力2 MPa,最大液室压力20 MPa;液室压力加载路径:从0 s至0.003 s,液室压力从0 MPa线性增大至2 MPa,并保持2 MPa至0.007 s;随后从0.007 s至0.011 s,液室压力从2 MPa线性增大至20 MPa,之后保持20 MPa直至拉深结束;压边间隙为1.05t。结论 通过充液成形方法,可以有效解决薄壁水槽盒形件拉深一序底部圆角减薄严重的问题,还可以提高成形质量及成形极限,省略中间退火工艺,提高经济效益。  相似文献   

5.
目的利用充液成形工艺成形普通拉深工艺难成形的大拉深比筒形件。方法通过理论公式计算了冷冲压工艺成形该制件的道次,利用有限元软件Dynaform对充液成形过程进行了3个步骤模拟,并研究了第1步拉深时初始反胀高度对成形制件减薄率的影响规律。结果利用理论公式计算,传统冲压方法成形拉深比为3.2的筒形件至少需要5个道次,而采用被动式充液成形方法只需要3个道次。每个道次的最大减薄率都在8%以内,最后得到拉深制件的最大减薄率为8.53%,在安全范围以内;第1步充液拉深时,反胀高度分别为1.75,2.75,3.75,4.75,5.75 mm时,得到制件的最大减薄率分别为5.28%,5.08%,4.8%,5.03%,5.03%。结论充液成形工艺较传统冲压工艺可以大大提高板料的成形极限,减少成形道次,成形制件质量好;合适的初始反胀高度,可以减小成形制件壁厚的最大减薄率。  相似文献   

6.
目的 解决一种铝合金船形深腔薄壁构件成形时尖端过渡部位容易起皱和入口圆角处容易破裂的问题.方法 应用有限元软件DYNAFORM建立充液成形的有限元模型,研究关键工艺参数对成形结果的影响规律并进行理论分析,最后通过充液成形实验对该工艺方案进行验证.结果 根据工艺优化方案,得出在最大液室压力为4 MPa,初始反胀压力为0,...  相似文献   

7.
目的基于有限元数值模拟软件Dynaform对三通管的成形工艺进行优化。方法分析不同的初始压力、成形压力、轴向进给力、背压平衡力和合模力等对三通管成形的影响。根据成形过程进行模拟,得到分布应力图、厚向应变图、成形极限图等结果,根据模拟结果对零件的成形性进行分析,预测减薄破裂、起皱和回弹等缺陷。结果初始压力在防止侧推头将管坯推皱的前提下,取值应越小越好。成形压力和最大压力能保证减薄率、增厚率和成形度的要求即可。轴向进给对最终的成形质量影响较大。随着摩擦因数的增大,零件的减薄率不断增加,但是增厚率是先减小后增大。结论根据数值模拟的结果能够很好地优化三通管的成形工艺方案。  相似文献   

8.
目的对低碳钢不均匀膨胀率异形截面弯管零件充液成形工艺参数进行研究。方法利用有限元方法对低碳钢异形截面管零件的充液成形过程进行有限元仿真,对影响圆角破裂的关键工艺参数进行分析及优化。结果液室压力过小,弯管圆角内侧不易贴模;压力过大,圆角内侧会因材料过度减薄而发生破裂。推头轴向进给量合适时,可以在圆角处形成"有益皱纹",防止材料不均匀膨胀发生破裂。结论成形压力在300 MPa,推头的轴向进给量为50 mm时,可以成形出合格零件。  相似文献   

9.
目的研究支管直径大小对T型三通管在充液成形过程中的影响。方法在Dynaform软件中建立了有限元模型,对T型三通管的成形过程进行了数值模拟,并进行了相关实验对比。结果随着支管直径的减小,主管端部的壁厚增大,主管壁厚最厚处逐渐从主管背部转移到主管侧壁处,支管直径越小,壁厚最厚处位置越靠上。支管直径较小的T型三通管的壁厚分布更加不均匀,壁厚变化更为剧烈。充液成形第一阶段的轴向补料量对于T型三通管成形的影响较大,支管直径较大的T型三通管补料量增大有助于减小减薄率;支管直径较小的T型三通管补料量增大,减薄率减小不明显,反而会大幅增加增厚率。结论 T型三通管的支管直径越小,其充液成形的难度越大,起皱和破裂的风险越大。支管直径越大,应增加第一阶段的补料量,支管直径越小,在满足减薄率的条件下需减少补料量。  相似文献   

10.
铝合金汽车顶盖充液成形的数值模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
目的研究铝合金汽车顶盖拉延工序的充液成形工艺。方法基于有限元分析软件Dynaform,利用带局部刚性凹模整形的被动式充液成形工艺,通过建立有限元分析模型,优化成形过程中的关键工艺参数,分析变形规律并进行质量控制。结果成形过程中的液室压力加载路径、压边力、拉延筋,以及坯料形状等工艺参数对成形影响较大。液室压力不宜过早加载。液室压力过大或压边力过小不利于顶部产生充分塑性变形。压边力过大极易造成顶盖圆角处的破裂。结论该成形工艺可行,且数值模拟的准确性及适用性较高,采用该成形工艺可得到表面质量良好,未出现起皱、破裂缺陷的合格零件。  相似文献   

11.
目的 建立AA5052铝合金管件电液成形数值模型,分析其成形过程.方法 应用Johnson-Cook本构方程,基于LS-DYNA平台对成形过程进行数值模拟分析,然后开展工艺试验,验证数值模拟模型的可靠性.结果 在管件电液自由胀形过程中,冲击波波阵面波头压力最高,管壁所受冲击波传递压力的分布关于金属丝几何中心始终是对称的...  相似文献   

12.
目的研究成形工艺参数对薄壁件多道次旋压变形均匀性的影响。方法采用试验的方法,研究了双轮数控旋压成形铝合金薄壁件过程中,旋压间隙δ、进给率f和旋轮圆角半径R等关键工艺参数,对制件表面质量和壁厚均匀性的影响。结果 3个工艺参数都对制件表面质量和壁厚均匀性有影响。结论减小旋压间隙δ、采用较大的主轴转速S和较小的进给率f可提高零件的表面质量和尺寸精度。改善零件壁厚分布的均匀化程度,适当提高旋轮圆角半径R,也能使变形的均匀化程度提高。  相似文献   

13.
目的 研究6063铝合金管件外增量成形过程,分析管件的成形效果,改进管件成形质量。方法 设置3组目标成形管件,使用Abaqus软件进行成形过程的数值模拟,通过考察成形管件的几何精度、壁厚分布、表面质量、成形力,分析成形质量和可能出现的问题。通过使用长120 mm、直径50 mm、壁厚1.5 mm的Al6063铝管进行管件外增量成形实验,验证数值模拟结果的可靠性。结果 成形管件会发生管端变形现象,具体表现为管端不圆与轴向伸长,成形件管端椭圆度为10.11%,管端变形程度与成形道次成正比,且在距离管端越近的成形区域,管端变形越明显。管壁成形区厚度增大并呈现不均匀分布。成形件管壁直线度偏差为0.34,且表面质量与径向进给量和轴向进给速度成反比,管件的圆角尺寸难以严格控制。径向力是成形过程中主要的成形力,其大小与工具头直径成正比。结论 管件外增量成形原理可靠,基于此能够实现多种目标管件的成形。由于成形原理的限制,成形件的成形质量还有很大的提升空间,合理制定工艺参数对提高成形质量十分重要。  相似文献   

14.
李长坤  吴波  牛灿  苟利军  王杜 《包装工程》2013,34(17):125-128
采用自行设计的活塞式液体灌装试验系统,利用正交试验方法,考察了灌装速度、液位跟踪距离、喷嘴内径和喷嘴出液口形状对灌装过程中滴漏和起泡现象的影响,确定了该活塞式液体灌装系统的最佳灌装参数。通过试验,确定了影响滴漏现象的主要因素为低速段速度和出液口形状,影响系统起泡现象的主要因素为喷嘴内径和液位跟踪距离,可以为活塞式液体灌装系统设计研发以及调试过程中的参数选择提供一定的指导。  相似文献   

15.
目的 针对选区激光熔化成形薄壁件过程中存在的变形较大、精度低等问题,通过获得最优工艺参数区间来减小薄壁件的变形。方法 利用有限元软件分析薄壁件成形过程中温度场和应力场的演化规律;建立形变量预测模型并进行试验验证,研究工艺参数对薄壁件尺寸偏差的影响,得到激光功率、扫描速度与形变量之间的关系,实现对形变量的预测和控制。结果 随着扫描层数的增加,熔池的最高温度和热影响区也随之增大,等温线越密集,温度梯度越大,最终趋于稳定;薄壁件成形过程中,出现两侧壁边缘向内倾斜、上侧边缘出现内凹的现象,薄壁件的最大应力随层数的增加而减小,最大热应力主要分布在薄壁件底层的两端;形变量随激光功率的增大而增大,随扫描速度的增大而减小,薄壁件的形变量最小约为0.02 mm;试验验证所建立的数学模型误差在10%左右,误差较小,可以对形变量进行良好的预测和控制。结论 激光功率100~200 W、扫描速度800~1 000 mm/s为最优参数区间;降低能量密度可以有效降低薄壁件形变量,提高其精度。  相似文献   

16.
目的 根据某大曲率薄壁件形状需求,以最大减薄率为优化目标,采用数值模拟与响应面相结合的方法对其成形的工艺参数进行优化,以得到合格的零件产品。方法 首先,研究压边力、拉延筋阻力、摩擦因数、冲压速度等单因素参数对最大减薄率的影响规律。根据规律变化确定正交试验的参数范围,并对正交试验结果进行极差分析,确定本次板料冲压成形有限元分析的工艺参数对最大减薄率影响大小的排序为:摩擦因数>压边力>拉延筋阻力百分比>冲压速度;根据极差分析结果,选定对最大减薄率影响较小的冲压速度为3 000 mm/s、其他3个工艺参数为变量进行再次优化,以摩擦因数、压边力、拉延筋阻力为优化对象建立响应面。结果 通过响应面预测结果可知,摩擦因数为0.09、压边力为409.730 kN、拉延筋阻力为32.384%时,最大减薄率得到最小值7.926%。将该组工艺参数进行模拟,得到最大减薄率为9.40%,与响应面预测值仅相差1.474%,相对误差率为15.68%。结论 经过试验验证,试验和优化的数值分析结果吻合较好,最大减薄率仅相差0.60%,证明了该方法的可行性。  相似文献   

17.
通过对小直径锥形管的工艺分析,介绍了一种成形的工艺方法和措施;并就成形、加工模具作了详细说明。  相似文献   

18.
目的 解决大型复杂薄壁铝合金空心型材挤压过程中材料流速均匀性控制难,以及模具局部应力集中导致模具寿命低、挤压型材尺寸稳定性差的问题。方法 采用有限元模拟方法对此类典型型材挤压过程进行仿真分析,根据仿真结果中型材出口材料流速分布情况,通过调控不同部位材料流入量及材料流动阻力,并以型材出口流速差和流速均方差(SDV)作为衡量挤压过程中材料流速均匀性的指标,逐步迭代优化模具结构以提高材料流动均匀性;根据仿真结果中挤压模具应力分布情况,以模具最高应力作为衡量模具强度的指标,逐步迭代优化模具结构以减小模具应力。结果 通过迭代仿真依次优化模具工作带长度、分流孔尺寸、阻流块高度等参数,最终型材出口流速差由25.07 mm/s降至2.72 mm/s,流速均方差由9.84 mm/s降至0.72 mm/s;通过迭代仿真优化焊合角度,最终模具最高应力由945 MPa降至863 MPa。采用基于有限元仿真优化结构的挤压模具成功制备了合格的铝合金型材样件,挤压试验结果与数值模拟结果吻合。结论 通过优化模具工作带长度、分流孔尺寸及阻流块高度,调控不同部位材料流入量及材料流动阻力,能够有效解决大型复杂薄壁铝合金空心...  相似文献   

19.
双金属复合管塑性复合成形工艺及应用   总被引:1,自引:0,他引:1       下载免费PDF全文
简单分析了双金属复合管塑性成形的过程,对目前国内双金属复合管的各种主要塑性成形复合技术进行了分析和比较,最后介绍了一种新的成形工艺.  相似文献   

20.
充型过程的数值模拟技术   总被引:1,自引:0,他引:1  
张舒娟  侯华  杨晶  毛红奎 《材料导报》2007,21(3):104-107
铸造充型过程的数值模拟技术是铸造领域的前沿技术.采用这些技术进行充型过程的数值模拟可以帮助人们更清楚地了解充型过程中金属液流动的自由表面和速度分布.介绍了充型过程数值模拟的发展过程、数学模型,探讨了充型过程的计算方法以及自由表面的处理,并指出了当前研究中存在的问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号