首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alzheimer''s disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) peptide. We have previously shown that the compound tetrahydrohyperforin (IDN5706) prevents accumulation of Aβ species in an in vivo model of AD, however the mechanism that explains this reduction is not well understood. We show herein that IDN5706 decreases the levels of ER degradation enhancer, mannosidase alpha-like 1 (EDEM1), a key chaperone related to endoplasmic-reticulum-associated degradation (ERAD). Moreover, we observed that low levels of EDEM1 correlated with a strong activation of autophagy, suggesting a crosstalk between these two pathways. We observed that IDN5706 perturbs the glycosylation and proteolytic processing of the amyloid precursor protein (APP), resulting in the accumulation of immature APP (iAPP) in the endoplasmic reticulum. To investigate the contribution of autophagy, we tested the effect of IDN5706 in Atg5-depleted cells. We found that depletion of Atg5 enhanced the accumulation of iAPP in response to IDN5706 by slowing down its degradation. Our findings reveal that IDN5706 promotes degradation of iAPP via the activation of Atg5-dependent autophagy, shedding light on the mechanism that may contribute to the reduction of Aβ production in vivo.  相似文献   

2.
The senile plaque is a pathologic hallmark of Alzheimer's disease (AD). Amyloid-β peptide (Aβ), the main constituent of senile plaques, is neurotoxic especially in its oligomeric form. Aβ is derived from the sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretases in the amyloidogenic pathway. Alternatively, APP can be cleaved by α-secretases within the Aβ domain to produce neurotrophic and neuroprotective α-secretase-cleaved soluble APP (sAPPα) in the nonamyloidogenic pathway. Since APP and α-, β-, and γ-secretases are membrane proteins, APP processing should be highly dependent on the membrane composition and the biophysical properties of cellular membrane. In this review, we discuss the role of the biophysical properties of cellular membrane in APP processing, especially the effects of phospholipases A2 (PLA2s), fatty acids, cholesterol, and Aβ on membrane fluidity in relation to their effects on APP processing.  相似文献   

3.
The amyloid precursor protein (APP) is an integral membrane glycoprotein whose cleavage products, particularly amyloid-β, accumulate in Alzheimer disease (AD). APP is present at synapses and is thought to play a role in both the formation and plasticity of these critical neuronal structures. Despite the central role suggested for APP in AD pathogenesis, the mechanisms regulating APP in neurons and its processing into cleavage products remain incompletely understood. F-box only protein 2 (Fbxo2), a neuron-enriched ubiquitin ligase substrate adaptor that preferentially binds high-mannose glycans on glycoproteins, was previously implicated in APP processing by facilitating the degradation of the APP-cleaving β-secretase, β-site APP-cleaving enzyme. Here, we sought to determine whether Fbxo2 plays a similar role for other glycoproteins in the amyloid processing pathway. We present in vitro and in vivo evidence that APP is itself a substrate for Fbxo2. APP levels were decreased in the presence of Fbxo2 in non-neuronal cells, and increased in both cultured hippocampal neurons and brain tissue from Fbxo2 knock-out mice. The processing of APP into its cleavage products was also increased in hippocampi and cultured hippocampal neurons lacking Fbxo2. In hippocampal slices, this increase in cleavage products was accompanied by a significant reduction in APP at the cell surface. Taken together, these results suggest that Fbxo2 regulates APP levels and processing in the brain and may play a role in modulating AD pathogenesis.  相似文献   

4.
Altered proteolysis of amyloid precursor protein is an important determinant of pathology development in Alzheimer''s disease. Here, we describe the detection of two novel fragments of amyloid precursor protein in H4 neuroglioma cells undergoing apoptosis. Immunoreactivity of these 25–35 kDa fragments to two different amyloid precursor protein antibodies suggests that they contain the amyloid-β region and an epitope near the C-terminus of amyloid precursor protein. Generation of these fragments is associated with cleavage of caspase-3 and caspase-7, suggesting activation of these caspases. Studies in neurons undergoing DNA damage-induced apoptosis also showed similar results. Inclusion of caspase inhibitors prevented the generation of these novel fragments, suggesting that they are generated by a caspase-dependent mechanism. Molecular weight prediction and immunoreactivity of the fragments generated suggested that such fragments could not be generated by cleavage at any previously identified caspase, secretase, or calpain site on amyloid precursor protein. Bioinformatic analysis of the amino acid sequence of amyloid precursor protein revealed that fragments fitting the observed size and immunoreactivity could be generated by either cleavage at a novel, hitherto unidentified, caspase site or at a previously identified matrix metalloproteinase site in the extracellular domain. Proteolytic cleavage at any of these sites leads to a decrease in the generation of α-secretase cleaved secreted APP, which has both anti-apoptotic and neuroprotective properties, and thus may contribute to neurodegeneration in Alzheimer''s disease.  相似文献   

5.
Abstract: Increased production of amyloid β peptide (Aβ) is highly suspected to play a major role in Alzheimer's disease (AD) pathogenesis. Because Aβ deposits in AD senile plaques appear uniquely in the brain and are fairly restricted to humans, we assessed amyloid precursor protein (APP) metabolism in primary cultures of the cell types associated with AD senile plaques: neurons, astrocytes, and microglia. We find that neurons secrete 40% of newly synthesized APP, whereas glia secrete only 10%. Neuronal and astrocytic APP processing generates five C-terminal fragments similar to those observed in human adult brain, of which the most amyloidogenic higher-molecular-weight fragments are more abundant. The level of amyloidogenic 4-kDa Aβ exceeds that of nonamyloidogenic 3-kDa Aβ in both neurons and astrocytes. In contrast, microglia make more of the smallest C-terminal fragment and no detectable Aβ. We conclude that human neurons and astrocytes generate higher levels of amyloidogenic fragments than microglia and favor amyloidogenic processing compared with previously studied culture systems. Therefore, we propose that the higher amyloidogenic processing of APP in neurons and astrocytes, combined with the extended lifespan of individuals, likely promotes AD pathology in aging humans.  相似文献   

6.
7.
Pancreatic adenocarcinoma or pancreatic cancer is often diagnosed at a very late stage at which point treatment options are minimal. Current chemotherapeutic interventions prolong survival marginally, thereby emphasizing the acute need for better treatment options to effectively manage this disease. Studies from different laboratories have shown that the Alzheimer disease-associated amyloid precursor protein (APP) is overexpressed in various cancers but its significance is not known. Here we sought to determine the role of APP in pancreatic cancer cell survival and proliferation. Our results show that pancreatic cancer cells secrete high levels of sAPPα, the α-secretase cleaved ectodomain fragment of APP, as compared with normal non-cancerous cells. Treatment of cells with batimastat or GI254023X, inhibitors of the α-secretase ADAM10, prevented sAPPα generation and reduced cell survival. Additionally, inhibition of sAPPα significantly reduced anchorage independent growth of the cancer cells. The effect of batimastat on cell survival and colony formation was enhanced when sAPPα downregulation was combined with gemcitabine treatment. Moreover, treatment of batimastat-treated cells with recombinant sAPPα reversed the inhibitory effect of the drug thereby indicating that sAPPα can indeed induce proliferation of cancer cells. Down-regulation of APP and ADAM10 brought about similar results, as did batimastat treatment, thereby confirming that APP processing is important for growth and proliferation of these cells. These results suggest that inhibition of sAPPα generation might enhance the effectiveness of the existing chemotherapeutic regimen for a better outcome.  相似文献   

8.
9.
The ubiquitous 24-meric iron-storage protein ferritin and multicopper oxidases such as ceruloplasmin or hephaestin catalyze oxidation of Fe(II) to Fe(III), using molecular oxygen as oxidant. The ferroxidase activity of these proteins is essential for cellular iron homeostasis. It has been reported that the amyloid precursor protein (APP) also has ferroxidase activity. The activity is assigned to a ferroxidase site in the E2 domain of APP. A synthetic 22-residue peptide that carries the putative ferroxidase site of E2 domain (FD1 peptide) has been claimed to encompass the same activity. We previously tested the ferroxidase activity of the synthetic FD1 peptide but we did not observe any activity above the background oxidation of Fe(II) by molecular oxygen. Here we used isothermal titration calorimetry to study Zn(II) and Fe(II) binding to the natural E2 domain of APP, and we employed the transferrin assay and oxygen consumption measurements to test the ferroxidase activity of the E2 domain. We found that this domain neither in the presence nor in the absence of the E1 domain binds Fe(II) and it is not able to catalyze the oxidation of Fe(II). Binding of Cu(II) to the E2 domain did not induce ferroxidase activity contrary to the presence of redox active Cu(II) centers in ceruloplasmin or hephaestin. Thus, we conclude that E2 or E1 domains of APP do not have ferroxidase activity and that the potential involvement of APP as a ferroxidase in the pathology of Alzheimer’s disease must be re-evaluated.  相似文献   

10.
11.
Neurochemical Research - Diabetes mellitus (DM), one of metabolic diseases, has been suggested as a risk factor for Alzheimer’s disease (AD). However, how the metabolic pathway activates...  相似文献   

12.
Abstract: Neurotransmitter receptors that increase phosphatidylinositol hydrolysis generate second messengers that activate protein kinase C. Here, we used metabotropic glutamate receptor agonists to increase both phosphatidylinositol hydrolysis and secretion of the soluble extracellular fragment of amyloid precursor protein (APPs) from cortical astrocyte cultures. The increase in APPs secretion was mimicked by direct activation of protein kinase C with phorbol ester and was suppressed by the metabotropic glutamate receptor antagonist l -(+)-2-amino-3-phosphonopropionic acid or by the protein kinase C inhibitor GF109203X. Ionotropic glutamate agonists did not increase APPs secretion. Forskolin or dibutyryl cyclic AMP inhibited the increase in APPs secretion caused by metabotropic glutamate receptor agonists or by phorbol ester treatment but did not affect basal APPs levels. Therefore, glutamatergic agonists that increase protein kinase C activation or decrease cyclic AMP formation may enhance the conversion of full-length APP to nonamyloidogenic APPs in Alzheimer's disease.  相似文献   

13.
It has been suggested that mild cognitive impairment (MCI) patients deteriorate faster than the healthy elderly population and have an increased risk of developing dementia. Certain blood molecular biomarkers have been identified as prognostic markers in Alzheimer’s disease (AD). The present study was aimed to assess the status of the platelet amyloid precursor protein (APP) metabolism in MCI and AD subjects and establish to what extent any variation could have a prognostic value suggestive of predictive AD in MCI patients. Thirty-four subjects diagnosed with MCI and 45 subjects with AD were compared to 28 healthy elderly individuals for assessing for protein levels of APP, β-APP cleaving enzyme 1 (BACE1), presenilin 1 (PS1) and a disintegrin and metalloproteinase-10 (ADAM-10) by western blot, and for the enzyme activities of BACE1 and γ-secretase by using specific fluorogenic substrates, in samples of platelets. A similar pattern in the healthy elderly and MCI patients was found for BACE1 and PS1 levels. A reduction of APP levels in MCI and AD patients compared with healthy elderly individuals was found. Augmented levels of ADAM-10 in both MCI and AD were displayed in comparison with age-matched control subjects. The ratio ADAM-10/BACE1 was higher for the MCI group versus AD group. Whereas BACE1 and PS1 levels were only increased in AD regarding to controls, BACE1 and γ-secretase activities augmented significantly in both MCI and AD groups. Finally, differences and similarities between MCI and AD patients were observed in several markers of platelet APP processing. Larger sample sets from diverse populations need to be analyzed to define a signature for the presence of MCI or AD pathology and to early detect AD at the MCI stage.  相似文献   

14.
Abstract: The effect of the Kunitz proteinase inhibitor (KPI) on potential β-amyloid precursor protein (βPP)-processing activities from control and Alzheimer's disease (AD) brains was examined using fluorogenic substrates designed to mimic the secretory and amyloidogenic cleavages in βPP. In addition, the level of secretion of KPI-containing βPP751 and KPI-lacking βPP695 from transfected cells was examined to assess the effect of the KPI on βPP secretion. βPP751 and βPP695, obtained from conditioned media of transfected cells, had no effect on proteinase activities against the secretory and amyloidogenic substrates in extracts from control and AD brains. At similar concentrations βPP751, but not βPP695, completely inhibited the activity of trypsin against these substrates. Serine proteinase inhibitors had only modest effects on activities from brain, whereas cysteine modification completely inhibited them, indicating that these proteinase activities were not of the serine type. Thus, the results do not support a role for the KPI in the secretion of βPP or in the amyloidogenic cleavage of βPP. The amounts of βPP695 and βPP751 collected from the media of transfected cells after 48 h of growth were similar, indicating an equal rate of secretion. This result suggests that the KPI domain in βPP751 did not inhibit the secretory cleavage in transfected cells.  相似文献   

15.
Abnormal activation of calpain is implicated in synaptic dysfunction and participates in neuronal death in Alzheimer disease (AD) and other neurological disorders. Pharmacological inhibition of calpain has been shown to improve memory and synaptic transmission in the mouse model of AD. However, the role and mechanism of calpain in AD progression remain elusive. Here we demonstrate a role of calpain in the neuropathology in amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic mice, an established mouse model of AD. We found that overexpression of endogenous calpain inhibitor calpastatin (CAST) under the control of the calcium/calmodulin-dependent protein kinase II promoter in APP/PS1 mice caused a remarkable decrease of amyloid plaque burdens and prevented Tau phosphorylation and the loss of synapses. Furthermore, CAST overexpression prevented the decrease in the phosphorylation of the memory-related molecules CREB and ERK in the brain of APP/PS1 mice and improved spatial learning and memory. Interestingly, treatment of cultured primary neurons with amyloid-β (Aβ) peptides caused an increase in the level of β-site APP-cleaving enzyme 1 (BACE1), the key enzyme responsible for APP processing and Aβ production. This effect was inhibited by CAST overexpression. Consistently, overexpression of calpain in heterologous APP expressing cells up-regulated the level of BACE1 and increased Aβ production. Finally, CAST transgene prevented the increase of BACE1 in APP/PS1 mice. Thus, calpain activation plays an important role in APP processing and plaque formation, probably by regulating the expression of BACE1.  相似文献   

16.
17.
两种构祀植物花药培养单倍体的诱导   总被引:2,自引:1,他引:2  
对110例广东汉族人血清作了补体C2, Bf, C4的测定,其基因频率分V1为:C2*C'0.9500, C2*B: 0.0227,C2-,4:0182, C2*QO:O.0091;Bf*S:0.8364, Bf^`F:0.1409, Bf*S07:0.0091, Bf *S025: 0.009i,Bf*S055:0,0045; C4*A3:0.6327,C4*A4:0.1327,C4*_00:0.1020, C4*A5:0.0255 (一4*A2: 0·0918,C4*,41:0.0053;C4*B1:0.4569, C4*B2:0.4416, C4*QO:O.0558,C4*B5:0.0152,C4"}B96: 0.0152, C4*B3:0.0102, C4*B92:0.0051。木调查在我国首次发现一例C2*QO纯合子。  相似文献   

18.
It has previously been reported that protein complexity (i.e. number of subunits in a protein complex) is negatively correlated to gene duplicability in yeast as well as in humans. However, unlike in yeast, protein connectivity in a protein–protein interaction network has a positive correlation with gene duplicability in human genes. In the present study, we have analyzed 1732 human and 1269 yeast proteins that are present both in a protein–protein interaction network as well as in a protein complex network. In the human case, we observed that both protein connectivity and protein complexity complement each other in a mutually exclusive manner over gene duplicability in a positive direction. Analysis of human haploinsufficient proteins and large protein complexes (complex size >10) shows that when protein connectivity does not have any direct association with gene duplicability, there exists a positive correlation between gene duplicability and protein complexity. The same trend, however, is not found in case of yeast, where both protein connectivity and protein complexity independently guide gene duplicability in the negative direction. We conclude that the higher rate of duplication of human genes may be attributed to organismal complexity either by increasing connectivity in the protein–protein interaction network or by increasing protein complexity.  相似文献   

19.
20.
The amyloid precursor protein (APP) is a ubiquitously expressed transmembrane adhesion protein and the progenitor of amyloid-β peptides. The major splice isoforms of APP expressed by most tissues contain a Kunitz protease inhibitor domain; secreted APP containing this domain is also known as protease nexin 2 and potently inhibits serine proteases, including trypsin and coagulation factors. The atypical human trypsin isoform mesotrypsin is resistant to inhibition by most protein protease inhibitors and cleaves some inhibitors at a substantially accelerated rate. Here, in a proteomic screen to identify potential physiological substrates of mesotrypsin, we find that APP/protease nexin 2 is selectively cleaved by mesotrypsin within the Kunitz protease inhibitor domain. In studies employing the recombinant Kunitz domain of APP (APPI), we show that mesotrypsin cleaves selectively at the Arg15-Ala16 reactive site bond, with kinetic constants approaching those of other proteases toward highly specific protein substrates. Finally, we show that cleavage of APPI compromises its inhibition of other serine proteases, including cationic trypsin and factor XIa, by 2 orders of magnitude. Because APP/protease nexin 2 and mesotrypsin are coexpressed in a number of tissues, we suggest that processing by mesotrypsin may ablate the protease inhibitory function of APP/protease nexin 2 in vivo and may also modulate other activities of APP/protease nexin 2 that involve the Kunitz domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号