首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
    
The thermal and mechanical properties of polybenzoxazine thermoset networks containing varying amounts of phenolic Mannich bridges, arylamine Mannich bridges, and methylene bridges have been investigated. In materials based on m‐toluidine and 3,5‐xylidine, the onset of thermal degradation is delayed until around 350 °C with no significant effect on the final char yield. The first of the three weight‐loss events usually seen in aromatic amine‐based polybenzoxazines is absent in these two materials. Materials with additional amounts of arylamine Mannich bridges and methylene bridges show improved mechanical properties, including higher crosslink densities and rubbery plateau moduli. Correlations between the observed mechanical properties and network structures are established. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3289–3301, 2000  相似文献   

2.
    
Hybrid materials based on silicic acid and polymethyl methacrylate (PMMA) were prepared by in situ bulk polymerization of a silicic acid sol and MMA mixture. Silicic acid sol was obtained by tetrahydrofuran (THF) extraction of silicic acid from water. Silicic acid was prepared by hydrolysis and condensation of sodium silicate in the presence of 3.6 M HCl. As a comparative study, PMMA composites filled by silica particles, which were derived from calcining the silicic acid gel, were prepared by a comparable in situ polymerization. Each set of PMMA/silica composites was subjected to thermal and mechanical studies. Residual THF in PMMA/silicic acid composites impacted the properties of the polymer composites. With increase in silica content, the PMMA composites filled with silica particles showed improved thermal and mechanical properties, whereas a decrease in thermal stability and mechanical strength was found for PMMA composites filled with silicic acid dissolved in THF. With a better compatibility with polymer matrix, silicic acid sol shows better reinforcement than silica particles in PMMA films prepared via blending of the corresponding THF solutions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
    
As the most advanced aerogel material, silica aerogel has had transformative industrial impacts. However, the use of silica aerogel is currently limited to the field of thermal insulation materials, so it is urgent to expand its application into other fields. In this work, silica aerogel/resin composites were successfully prepared by combining silica aerogel with a resin matrix for dental restoration. The applications of this material in the field of dental restoration, as well as its performance, are discussed in depth. It was demonstrated that, when the ratio of the resin matrix Bis-GMA to TEGDMA was 1:1, and the content of silica aerogel with 50 μm particle size was 12.5%, the composite achieved excellent mechanical properties. The flexural strength of the silica aerogel/resin composite reached 62.9546 MPa, which was more than five times that of the pure resin. Due to the presence of the silica aerogel, the composite also demonstrated outstanding antibacterial capabilities, meeting the demand for antimicrobial properties in dental materials. This work successfully investigated the prospect of using commercially available silica aerogels in dental restorative materials; we provide an easy method for using silica aerogels as dental restorative materials, as well as a reference for their application in the field of biomedical materials.  相似文献   

4.
    
The mechanical strength and modulus of chopped carbon fiber (CF)‐reinforced polybenzoxazine composites were investigated by changing the length of CFs. Tensile, compressive, and flexural properties were investigated. The void content was found to be higher for the short fiber composites. With increase in fiber length, tensile strength increased and optimized at around 17 mm fiber length whereas compressive strength exhibited a continuous diminution. The flexural strength too increased with fiber length and optimized at around 17 mm fiber length. The increase in strength of composites with fiber length is attributed to the enhancement in effective contact area of fibers with the matrix. The experimental results showed that there was about 350% increase in flexural strength and 470% increase in tensile strength of the composites with respect to the neat polybenzoxazine, while, compressive properties were adversely affected. The composites exhibited an optimum increase of about 800% in flexural modulus and 200% in tensile modulus. Enhancing the fiber length, leads to fiber entanglement in the composites, resulted in increased plastic deformation at higher strain. Multiple branch matrix shear, debonded fibers and voids were the failures visualized in the microscopic analyses. Defibrillation has been exhibited by all composites irrespective of fiber length. Fiber debonding and breaking were associated with short fibers whereas clustering and defibrillation were the major failure modes in long fiber composites. Increasing fiber loading improved the tensile and flexural properties until 50–60 wt% of fiber whereas the compressive property consistently decreased on fiber loading. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
    
Graphene is a 2D sp2‐hybridized carbon sheet and an ideal material for the adsorption‐based separation of organic pollutants. However, such potential applications of graphene are largely limited, owing to their poor solubility and extensive aggregation properties through graphene? graphene interactions. Herein, we report the synthesis of graphene‐based composites with γ‐Fe2O3 nanoparticle for the high‐performance removal of endocrine‐disrupting compounds (EDC) from water. The γ‐Fe2O3 nanoparticles partially inhibit these graphene? graphene interactions and offer water dispersibility of the composite without compromising much of the high surface area of graphene. In their dispersed form, the graphene component offers the efficient adsorption of EDC, whilst the magnetic iron‐oxide component offers easier magnetic separation of adsorbed EDC.  相似文献   

6.
Dissolution and reprecipitation of silica during aging in water improve the wet gels mechanical stiffness and strength, and hence shrinkage during supercritical drying is reduced. We have investigated how the strength and stiffness of a 2-step TEOS acid-base catalyzed wet gel can be improved by aging in a solution of water/ethanol (20–40 vol%) at various temperatures (20–70°C) and time (2 h and 24 h) and how this influences the aerogels properties. The linear shrinkage during supercritical drying was reduced from 29% to 2% by introducing the aging step in the 20 vol% water/ethanol solution for 24 h at 60°C.We have also in previous works introduced the idea of preparing ambient pressure dried silica aerogels by increasing the wet gels stiffness by aging in a TEOS solution until shrinkage during drying is almost eliminated. The gels aged in the water/ethanol solutions were further aged in a TEOS/ethanol solution and the effect of the increasing water content in the pore liquid was studied. A xerogel density of 0.20 g/cm3 is reported for gels with a shear modulus (G) of 30 MPa.  相似文献   

7.
8.
    
Lithium-ion batteries have been developing intensively and earn an unprecedented reputation, yet advanced performance and safety issue still require considerable investigation. Separator is vital to comprehensive properties of batteries, where the mechanical properties are key to breaking through of new-type separator. Unfortunately, electrolyte submersion has caused damage to strength of cellulose separator. Whereupon, in this work, cellulose separator is optimized by introducing lignin particles to promote electrolyte-immersed mechanical strength. Experiments are conducted concerning surface morphology, contact angle, porosity, electrolyte uptake, mechanical properties and electrochemical performance. Molecular simulation is implemented to explore the mechanism of tensile behavior of cellulose and lignin subjected to electrolyte solvents. Experimental results confirm positive effect of lignin addition in improving mechanical properties and simultaneously maintaining impressive electrochemical performance of the cellulose/lignin composites separators. Besides, lignin addition amount of 2.5% and 5% is recommended to achieve promising overall properties. Molecular simulation has successfully unveiled that weakening of cellulose separator submerged in electrolyte is resulted by the deformed cellulose amorphous region and the promoting effect of adding lignin is contributed from the new hydrogen bonds generated between cellulose and lignin molecules. Hopefully, this work provides novel insight on preparing remarkable separator and mechanism of materials behavior.  相似文献   

9.
Silica nanoparticles of various sizes have been incorporated by melt compounding in a poly(methyl methacrylate) (PMMA) matrix to enhance its thermal and mechanical properties. In order to improve nanoparticles dispersion, PMMA grafted particles have been prepared by atom transfer radical polymerization (ATRP) from well-defined silica nanoparticles. This strategy was expected to ensure compatibility between both components of the PMMA nanocomposites. TEM analysis have been performed to evaluate the nanosilica dispersion whereas modified and non-modified silica/PMMA nanocomposites thermal stability and mechanical properties have been investigated by both thermogravimetric and dynamical mechanical analysis.  相似文献   

10.
11.
    
Carbonized lignin has been proposed as a sustainable and domestic source of activated, amorphous, graphitic, and nanostructured carbon for many industrial applications as the structure can be tuned through processing conditions. However, the inherent variability of lignin and its complex physicochemical structure resulting from feedstock and pulping selection make the Process-Structure-Property-Performance (PSPP) relationships hard to define. In this work, radial distribution functions (RDFs) from synchrotron X-ray and neutron scattering of lignin-based carbon composites (LBCCs) are investigated using the Hierarchical Decomposition of the Radial Distribution Function (HDRDF) modelling method to characterize the local atomic environment and develop quantitative PSPP relationships. PSPP relationships for LBCCs defined by this work include crystallite size dependence on lignin feedstock as well as increasing crystalline volume fraction, nanoscale composite density, and crystallite size with increasing reduction temperature.  相似文献   

12.
In this study, the synthesis of ZnO/SiO2 nanocomposites using bamboo leaf ash (BLA) and tested their photocatalytic activity for rhodamine B decolorization have been conducted. The nanocomposites were prepared by the sol–gel reaction of zinc acetate dihydrate, which was used as a zinc oxide precursor, with silica gel obtained from the caustic extraction of BLA. The effect of the Zn content (5, 10, and 20 wt%) on the physicochemical characteristics and photocatalytic activity of the nanocomposites was investigated. The results of X-ray diffraction, scanning electron microscopy, gas sorption, and transmission electron microscopy characterization confirmed the mesoporous structure of the composites containing nanoflower-like ZnO (wurtzite) nanoparticles of 10–30 nm in size dispersed on the silica support. Further, the nanocomposites were confirmed to be composed of ZnO/SiO2 by X-ray photoelectron spectroscopy analysis. Meanwhile, diffuse-reflectance UV–visible spectrophotometry analysis of the nanocomposites revealed band gap energies of 3.38–3.39 eV. Of the tested nanocomposites, that containing 10 wt% Zn exhibited the highest decolorization efficiency (99%) and fastest decolorization rate. In addition, the degradation efficiencies were not reduced significantly after five repeated runs, demonstrating the reusability of the nanocomposite catalysts. Therefore, the ZnO/SiO2 nanocomposite obtained from BLA is a promising reusable photocatalyst for the degradation of dye-polluted water.  相似文献   

13.
    
Rheological, thermal, and mechanical properties of polymer particle/LLDPE blends were studied in this paper. The blends were prepared individually by incorporating nanoparticles of polystyrene (nPS) of ~60 nm and polymethyl methacrylate (nPMMA) of ~50 nm with different wt% loading (i.e., 0.10–0.5%). It was shown from the experimental results that rheological, thermal and mechanical properties were increased as polymer particles blended with LLDPE. Blends with 0.25 wt% loading of nPS and 0.5 wt% loading of nPMMA exhibited better rheological, thermal, and mechanical properties compared with that of other wt% loadings. The improvements in properties were due to the close packing of LLDPE chains as recorded by improvement in crystallinity of LLDPE with addition of nPS and nPMMA as shown by SEM. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
    
Vinyl chloride–acrylonitrile (VC–AN) copolymer was synthesized through emulsion copolymerization. VC–AN copolymer/silica nanocomposites were prepared by solution blending of copolymer and silica in a common solvent, N,N‐dimethylformamide (DMF). The rheology studies show that the shear‐thinning behavior of the VC–AN copolymer solution becomes less distinct as nano particles are introduced. It was also found that the viscosity of the copolymer solution decreases with adding small amount of nano particles. Transmission electron microscopy observations indicate that the UV‐treated silica could disperse well in the copolymer matrix. Differential scanning calorimeter studies suggest that the presence of the silica suppresses crystallization of the AN segments in the copolymers. Because of the interactions between copolymer chains and inorganic particles, the thermal stability and mechanical strength of the VC–AN copolymers are improved considerably. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3127–3134, 2005  相似文献   

15.
    
Polystyrene‐core–silica‐shell hybrid particles were synthesized by combining the self‐assembly of nanoparticles and the polymer with a silica coating strategy. The core–shell hybrid particles are composed of gold‐nanoparticle‐decorated polystyrene (PS‐AuNP) colloids as the core and silica particles as the shell. PS‐AuNP colloids were generated by the self‐assembly of the PS‐grafted AuNPs. The silica coating improved the thermal stability and dispersibility of the AuNPs. By removing the “free” PS of the core, hollow particles with a hydrophobic cage having a AuNP corona and an inert silica shell were obtained. Also, Fe3O4 nanoparticles were encapsulated in the core, which resulted in magnetic core–shell hybrid particles by the same strategy. These particles have potential applications in biomolecular separation and high‐temperature catalysis and as nanoreactors.  相似文献   

16.
Mechanical and Thermal Properties of Organic/Inorganic Hybrid Coatings   总被引:2,自引:0,他引:2  
Two types of organic/inorganic hybrid coatings were produced by the sol-gel route from (a) 80% tetra-ethoxy-silane (TEOS) and 20% glycidoxypropyl-trimethoxy-silane (GPTMS) and (b) GPTMS with varying amounts of diethylene-triamine (DETA). Residual stress was measured from substrate curvature and modulus and hardness were studied using nano-indentation.Coatings derived from 80TEOS/20GPTMS are relatively stiff and brittle. Tensile residual stress, elastic modulus and hardness all increase as the curing temperature is increased to 350°C. The organic components are not cross-linked and act as network modifiers.Coatings derived from GPTMS/DETA are less stiff and softer. Increasing the DETA content increases both E and H by increasing the connectivity of the organic network which dominates the mechanical properties. Thermal degradation begins at about 250°C in all cases, but is retarded when the connectivity of the organic network is high.  相似文献   

17.
    
A prototype of novel low thermal expansion materials using mesoporous silica particles is demonstrated. Mesoporous silica/polymer composites with densely filled polymer inside the mesopore space are fabricated by mechanically mixing both organically modified mesoporous silica and epoxy polymer. The mesopores are easily penetrated by polymers as a result of the capillary force during the mechanical composite processing. Furthermore, we propose a new model of polymer mobility restriction using mesoporous silica with a large pore space. The robust inorganic frameworks covering the polymer effectively restrict the polymer mobility against thermal energy. As a result, the degree of total thermal expansion of the composites is drastically decreased. From the mass‐normalized thermal mechanical analysis (TMA) charts of various composites with different amounts of mesoporous silica particles, it is observed that the coefficient of thermal expansion (CTE) values gradually increase with an increase of the polymer amount outside the mesopores. It is proven that the CTE values in the range over the glass‐transition temperatures (Tg) are perfectly proportional to the outside polymer amounts. Importantly, the Y‐intercept of the relation equation obtained by a least‐square method is the CTE value and is almost zero. This means that thermal expansion does not occur if no polymers are outside the mesopores. Through such a quantative discussion, we clarify that only the outside polymer affects the thermal expansion of the composites, that is, the embedded polymers inside the mesopores do not expand at all during the thermal treatment.  相似文献   

18.
    
Waterborne pressure sensitive adhesives (PSAs) consisting of polymer microparticle emulsions (i.e. latex) are more commonly used in commercial applications than solvent-borne alternatives, as the use of water as a suspension medium provides better consumer safety and reduces environmental impact. However, the lower mechanical performance of waterborne PSAs prevents their use in applications requiring permanent adhesion or strong bonding between substrates. This reduction in mechanical strength is often attributed to void spaces that form during water evaporation and coalescence of the latex particles, and thus a potential strategy to improve PSA strength would be to add filler materials to occupy these voids. Fundamental studies investigating how interfacial interactions between the latex and fillers affect the collective strength of the films would enable better design of adhesive compositions to tailor PSA mechanical properties. Here we report the use of polymer brush-grafted nanoparticles (PGNPs) as a means of mechanically reinforcing the PSAs, and determine how different aspects of the particle and polymer brush designs enable this improvement in adhesive performance. The PGNPs investigated here are intentionally designed to phase segregate into the aqueous phase of the initial latex suspension, which allows them to both fill free pore volume and also form multivalent supramolecular interactions with the latex particles to form polymer bridges that improve the interconnectivity of the final film. These studies provide insight into potential design strategies for tuning PSA properties with PGNPs, and enable up to 32% improvements to the cohesive strength of the PSAs without the typical deterioration of adhesive strength observed in PSAs using non-brush-coated particle fillers.  相似文献   

19.
    
Gold–silica hybrids are appealing in different fields of applications like catalysis, sensorics, drug delivery, and biotechnology. In most cases, the morphology and distribution of the heterounits play significant roles in their functional behavior. Methods of synthesizing these hybrids, with variable ordering of the heterounits, are replete; however, a complete characterization in three dimensions could not be achieved yet. A simple route to the synthesis of Au‐decorated SiO2 spheres is demonstrated and a study on the 3D ordering of the heterounits by scanning transmission electron microscopy (STEM) tomography is presented—at the final stage, intermediate stages of formation, and after heating the hybrid. The final hybrid evolves from a soft self‐assembled structure of Au nanoparticles. The hybrid shows good thermal stability up to 400 °C, beyond which the Au particles start migrating inside the SiO2 matrix. This study provides an insight in the formation mechanism and thermal stability of the structures which are crucial factors for designing and applying such hybrids in fields of catalysis and biotechnology. As the method is general, it can be applied to make similar hybrids based on SiO2 by tuning the reaction chemistry as needed.  相似文献   

20.
Mesoporous silica monoliths with various ordered nanostructures containing transition metal M2+ cations in variable amounts were elaborated and studied. A phase diagram depicting the different phases as a function of the M2+ salt/tetramethyl orthosilicate (TMOS) and surfactant P123/TMOS ratios was established. Thermal treatment resulted in mesoporous monoliths containing isolated, accessible M2+ species or condensed metal oxides, hydroxides, and salts, depending on the strength of the interactions between the metal species and the ethylene oxide units of P123. The ordered mesoporosity of the monoliths containing accessible M2+ ions was used as a nanoreactor for the elaboration of various transition metal compounds (Prussian blue analogues, Hofmann compounds, metal–organic frameworks), and this opens the way to the elaboration of a large range of nanoparticles of multifunctional materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号