首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By reaction with sodium ethoxide and as a function of their structures, 2‐[(1‐alkyl(aryl)‐4‐cyano‐6,7‐dihydro‐5H‐cyclopenta[c ]pyridin‐3‐yl)oxy]acetamides 11 gave 1‐amino‐5‐alkyl(aryl)‐7,8‐dihydro‐6H‐cyclopenta[d ]furo[2,3‐b ]pyridine‐2‐carboxamides 10 and/or 1‐alkyl(aryl)‐3‐amino‐6,7‐dihydro‐5H‐cyclopenta[c ]pyridine‐4‐carbonitriles 12 .  相似文献   

2.
The reaction of 4‐amino‐5,5‐dimethyl‐5H‐1,2‐oxathiole 2,2‐dioxide ( 1 ) with 2‐(arylidene)malononitriles 2 in ethanol, at reflux, using piperidine as catalyst, afforded 5‐amino‐3,3‐dimethyl‐7‐aryl‐3H‐[1,2]oxathiolo[4,3‐b]pyridine‐6‐carbonitrile 1,1‐dioxides ( 3 ) in moderate chemical yields.  相似文献   

3.
A series of new thiazolyl chalcones, 1‐[2‐amino‐4‐methyl‐1, 3‐thiazol‐5‐yl]‐3‐aryl‐prop‐2‐en‐1‐one were prepared by piperidine mediated Claisen‐Schmidt condensation of thiazolyl ketone with substituted aromatic aldehyde. These chalcones on cyclization gave 2‐amino‐6‐(2‐amino‐4‐methyl‐1,3‐thiazol‐5‐yl)‐4‐aryl‐4H‐pyridine‐3‐carbonitrile and 2‐amino‐6‐(2‐amino‐4‐methyl‐1,3‐thiazol‐5‐yl)‐4‐aryl‐4H‐pyran‐3‐carbonitrile. The results showed that this skeletal framework exhibited marked potency as antimicrobial agents. The most active antibacterial agent was 2‐amino‐6‐(2‐amino‐4‐methyl‐1,3‐thiazol‐5‐yl)‐4‐(4‐chlorophenyl)‐4H‐pyran‐3‐carbonitrile while 2‐amino‐6‐(2‐amino‐4‐methyl‐1,3‐thiazol‐5‐yl)‐4‐(4‐methoyphenyl)‐4H‐pyran‐3‐carbonitrile appeared to be the most active antifungal agent. J. Heterocyclic Chem., (2011).  相似文献   

4.
Ethyl 7‐amino‐3‐(3‐methyl‐5‐oxo‐1‐phenyl‐2‐pyrazolin‐4‐yl)‐5‐aryl‐5H‐thiazolo[3,2‐a]pyrimidine‐6‐carboxylate was synthesized by the reaction of 4‐(2‐aminothiazol‐4‐yl)‐3‐methyl‐5‐oxo‐1‐phenyl‐2‐pyrazoline with arylidene ethyl cyanoacetate and it transformed to related fused heterocyclic systems via reaction with various reagents. The biological activities of these compounds were evaluated.  相似文献   

5.
Several new 6‐amino‐ and 6,8‐diamino‐4‐aryl‐2,3‐dihydropyrimido[4,5‐b][1,4]diazepines were obtained from the reaction of 4,5,6‐triaminopyrimidine 1a and 2,4,5,6‐tetraaminopyrimidine 1b with one equivalent of 3‐dimethylaminopropiophenones 2 in absolute ethanol. Structure analysis of 6‐amino‐ and 6,8‐diamino‐4‐aryl‐2,3‐dihydropyrimido[4,5‐b][1,4]diazepines 3a‐i , determined by detailed nmr measurements, reveals a high regioselectivity of this reaction.  相似文献   

6.
Herein, we present an innovative, novel, and highly convenient protocol for the synthesis of 3‐(pyridin‐2‐yl)‐5‐sec‐aminobiphenyl‐4‐carbonitriles ( 6a , 6b , 6c , 6d , 6e , 6f , 6g ) and 9,10‐dihydro‐3‐(pyridine‐2‐yl)‐1‐sec‐aminophenanthrene‐2‐carbonitriles ( 10a , 10b , 10c , 10d , 10e ), which have been delineated from the reaction of 4‐sec‐amino‐2‐oxo‐6‐aryl‐2H‐pyran‐3‐carbonitrile ( 4a , 4b , 4c , 4d , 4e , 4f , 4g ) and 4‐sec‐amino‐2‐oxo‐5,6‐dihydro‐2H‐benzo[h]chromene‐3‐carbonitriles ( 9a , 9b , 9c , 9d , 9e ) with 2‐acetylpyridine ( 5 ) through the ring transformation reaction by using KOH/DMF system at RT. The salient feature of this procedure is to provide a transition metal‐free route for the synthesis of asymmetrical 1,3‐teraryls like 3‐(pyridin‐2‐yl)‐5‐sec‐aminobiphenyl‐4‐carbonitriles ( 6a , 6b , 6c , 6d , 6e , 6f , 6g ) and 9,10‐dihydro‐3‐(pyridine‐2‐yl)‐1‐sec‐aminophenanthrene‐2‐carbonitriles ( 10a , 10b , 10c , 10d , 10e ). The novelty of the reaction lies in the creation of an aromatic ring from 2H‐pyran‐2‐ones and 2H‐benzo[h]chromene‐3‐carbonitriles via two‐carbon insertion from 2‐acetylpyridine ( 5 ) used as a source of carbanion.  相似文献   

7.
A facile synthesis of trans isomers of 4‐aryl‐3‐methyl‐6‐oxo‐4,5,6,7‐tetrahydro ‐ 2H ‐ pyrazolo[3,4‐b]pyridine‐5‐carbonitriles via three‐component condensation reaction of an aldehyde, 3‐amino‐5‐methylpyrazole and ethyl cyanoacetate in acetonitrile has been developed under microwave irradiation. This one‐pot reaction proceeds without any catalyst in short times and gives the product in high selectivities and high yields.  相似文献   

8.
On treatment of 3‐amino‐5‐aryl‐1H‐pyrazoles 1 with dialkyl dicyanofumarates (=(E)‐but‐2‐enedioates) 4 in boiling 1,2‐dichloroethane, two competitive reactions occurred leading to 3‐aryl‐5‐cyano‐6,7‐dihydro‐6‐oxo‐1H‐pyrazolo[3,4‐b]pyridine‐4‐carboxylates 10 and 7‐amino‐2‐arylpyrazolo[1,5‐a]pyrimidine‐5,6‐dicarboxylates 11 . In DMF at room temperature, as well as at 100°, only compounds 10 were isolated. The formation of the major products of type 10 was rationalized via Michael addition of 1 as a C(4)‐nucleophile onto 4 , followed by HCN elimination and lactamization. On the other hand, the minor products 11 result from a Michael addition of 1 onto 4 via the NH2 group, and subsequent HCN elimination and cyclization. The structures of the products have been established by X‐ray crystallography.  相似文献   

9.
A facile heterogeneous synthesis of 3‐amino‐1‐aryl‐1H‐naphtho[2,1‐b]pyran and 2‐amino‐4‐aryl‐4H‐1‐benzopyran derivatives 3 and 5 , respectively, was carried out efficiently by one‐pot three‐component coupling of an aromatic aldehyde 1 , an active methylene compound 2 , and naphthalen‐2‐ol or a phenol 4 in the presence of 5‐Å molecular sieves under solvent‐free microwave‐irradiation conditions (Scheme 1 and 2, Tables 1 and 2). The catalyst was recovered and recycled (Table 3).  相似文献   

10.
Treatment of 3‐aryl‐2‐thioxo‐1,3‐thiazolidin‐4‐ones 1 with CN? and NCO? effected the ring cleavage providing [(cyanocarbonothioyl)amino]benzenes 4 and arylisothiocyanates 5 , respectively. Similar treatment of 5‐(2‐aryl‐2‐oxoethyl) derivatives 2 afforded 2,4‐bis(2‐aryl‐2‐oxoethylidene)cyclobutane‐1,3‐diones 6 along with each of the preceding products. Treatment of the respective (E,Z)‐5‐(2‐aryl‐2‐oxoethylidene) analogues 3b and 3c with CN? gave 4b and 4c and 2‐(arylcarbonyl)‐2‐methoxy‐4‐oxopentanedinitriles 7b and 7c , in addition to 3,6‐bis[2‐(4‐chlorophenyl)‐1‐methoxy‐2‐oxoethylidene]‐1,4‐dithiane‐2,5‐dione 8c , which has been generated from 3c . Reactions of 3c or 3d with NCO? provided 5c or 5d , together with 8c or 8d as pure isomers. In the formation of the MeO products 7 and 8 , the solvent (MeOH) has participated. Structures of these products are based on microanalytical and spectroscopic data. Rationalizations for the above transformations are given.  相似文献   

11.
The condensation of 4‐amino‐3‐aryl‐5‐mercapto‐1, 2, 4‐triazoles (1a‐f) with 6‐/8‐substituted 1,4‐dihydro‐4‐oxo‐quinoline‐3‐carboxylic adds (2a‐d) in the presence of phosphorus oxychloride on refluxng or under microwave irradiation gave twenty four novel 3‐aryl‐6‐ (6‐/8‐substituted 4‐chloroquinoline‐3‐yl)‐s‐triazolo[3,4‐b]‐1, 3,4‐thiadiazoles (4a‐x), Considerable increase in the reaction rate has been observed with improved yields under microwave irradiation. The structures of the compounds synthesized were determined by elemental analyses, IR, 1H NMR and MS spectra. Their spectral properties and the reaction mechanism were also discussed. The preliminary biological test showed that some of compounds bad moderate antibacterial activities.  相似文献   

12.
Synthetic routes for the preparation of methyl 2‐amino‐4‐methoxythieno[2,3‐d]pyrimidine‐6‐carboxylate (4) ‐ useful intermediate for lipophilic and classical antifolates from 2‐amino‐4,6‐dichloropyrimidine‐5‐car‐baldehyde (1) have been studied. It has been shown that more efficient synthesis of compound 4 includes the preparation of 4‐methoxy derivative 7 and subsequent tandem substitution/annulation reaction with methyl mercaptoethanoate in dimethylformamide in the presence of potassium carbonate and molecular sieves 4 Å. Compound 4 was used for the synthesis of N‐aryl 2‐amino‐4‐oxo‐3,4‐dihydrothieno[2,3‐d]‐pyrimidine‐6‐carboxamides 10a‐c, including an analog of folic acid with amide bridge ‐ N‐(4‐{[(2‐amino‐4‐oxo‐3,4‐dihydrothieno[2,3‐d]pyrirnidin‐6‐yl)carbonyl]amino}‐benzoyl)‐L‐glutamic acid (10c) .  相似文献   

13.
3‐Alkyl/aryl‐3‐ureido‐1H,3H‐quinoline‐2,4‐diones ( 2 ) and 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) react in boiling concentrated HCl to give 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ). The same compounds were prepared by the same procedure from 2‐alkyl/aryl‐3‐ureido‐1H‐indoles ( 4 ), which were obtained from the reaction of 3‐alkyl/aryl‐3‐aminoquinoline‐2,4(1H,3H)‐diones ( 1 ) with 1,3‐diphenylurea or by the transformation of 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) and 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ) in boiling AcOH. The latter were converted into 1,3‐bis[2‐(2‐oxo‐2,3‐dihydro‐1H‐imidazol‐4‐yl)phenyl]ureas ( 5 ) by treatment with triphosgene. All compounds were characterized by 1H‐ and 13C‐NMR and IR spectroscopy, as well as atmospheric pressure chemical‐ionisation mass spectra.  相似文献   

14.
Optically active 2‐amino‐5‐oxo‐5,6,7,8‐tetrahydro‐4H‐chromene‐3‐carboxylates, 2‐amino‐5‐oxo‐5,6,7,8‐tetrahydro‐4H‐chromene‐3‐carbonitriles, and 2‐amino‐8‐oxo‐5,6,7,8‐tetrahydro‐4H‐chromene‐3‐carbonitriles were synthesized. Using cinchona alkaloid‐derived bifunctional catalysts, the corresponding 2‐amino‐4H‐chromene derivatives were obtained in high yields and moderate to high ee values (up to 82% ee) from the tandem Michael addition–cyclization reaction between 1,3‐cyclohexanediones or 1,2‐cyclohexanediones and (E )‐3‐aryl‐2‐cyanoacrylate or alkylidene malononitrile derivatives.  相似文献   

15.
“On water” multicomponent condensation of aromatic aldehydes, malononitrile, and 3‐methyl‐2‐pyrazoline‐5‐one in the presence of sodium hydroxide as catalyst leads to 6‐amino‐3‐methyl‐4‐aryl‐1,4‐dihydropyrano[2,3‐c]pyrazole‐5‐carbonitriles in 85–98% yields.  相似文献   

16.
Synthesis of novel 2‐3‐methyl‐5‐[(E)‐2‐aryl‐1‐ethenyl]‐4‐isoxazolyl‐4,10a‐diaryl‐1,10a‐dihydro‐2H‐benzo[d]pyrazino[2,1‐b][1,3]oxazoles 5 were simply achieved by the reaction of 2‐[3‐methyl‐5‐[(E)‐2‐aryl‐1‐ethenyl]‐4‐isoxazolyl(2‐oxo‐2‐arylethyl)amino]‐1‐aryl‐1‐ethanones 3 with o‐aminophenol 4 in the presence of CAN catalyst. The intermediates, 2‐[3‐methyl‐5‐[(E)‐2‐aryl‐1‐ethenyl]‐4‐isoxazolyl(2‐oxo‐2‐arylethyl)amino]‐1‐aryl‐1‐ethanones 3 , were prepared by the reaction of 4‐amino‐3‐methyl‐5‐styrylisoxazole 1 , with phenacylbromides 2 in ethanol in the presence of K2CO3. The structures of the newly synthesized compounds 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j , 3k , 3l and 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 5k , 5l have been confirmed by analytical and spectral data.  相似文献   

17.
Possible approaches to synthesis of 5‐methyl‐4‐oxo‐2‐(coumarin‐3‐yl)‐N‐aryl‐3,4‐dihydrothieno[2,3‐d]pyrimidine‐6‐carboxamides 4 have been discussed. It is shown that the preferable approach is cyclization of 2‐iminocoumarin‐3‐carboxamides 1 , utilizing 5‐amino‐3‐methyl‐N2‐arylthiophene‐2,4‐dicarboxamides 2 as binucleophilic reagents. The proposed procedure allowed us to easily obtain 4 in two stages, using common reagents. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:341–346, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20303  相似文献   

18.
The 4‐quinolone‐2‐carbohydrazide 6a was converted into 1‐aryl‐3‐(4‐quinolon‐2‐yl)ureas 5a , 5b , 5c , 5d , 5e , 1‐aryl‐3‐(4‐quinolon‐2‐yl)imidazolidine‐2,4‐diones 9a , 9b , and N‐(4‐quinolon‐2‐yl)carbamates 10a , 10b via 4‐quinolone‐2‐carbonylazide 7a . The 4‐methoxyquinoline‐2‐carbohydrazide 6b was also transformed into 1‐aryl‐3‐(4‐methoxyquinolin‐2‐yl)ureas 11a , 11b , 11c , 11d , 1‐aryl‐3‐(4‐methoxyquinolin‐2‐yl)imidazolidine‐2,4‐diones 12a , 12b , and N‐(4‐methoxyquinolin‐2‐yl)carbamates 13a , 13b via 4‐methoxyquinoline‐2‐carbonylazide 7b . Some of the 1‐aryl‐3‐(4‐quinolon‐2‐yl)ureas 5a , 5b , 5c , 5d , 5e showed the in vitro antimalarial activity to chloroquine‐resistant Plasmodium falciparum, wherein IC50 was 0.93 to 4.00 μM.  相似文献   

19.
A series of 2‐amino‐7‐methoxy‐4‐aryl‐4H‐chromene‐3‐carbonitrile compounds 2 were obtained by condensation of 3‐methoxyphenol with β‐dicyanostyrenes 1 in absolute ethanol containing piperidine. The intermediate enamines 3 were prepared by compounds 2 with 5‐substituted‐1,3‐cyclohexanedione using p‐toluenesuflonic acid (TsOH) as catalyst. The title compounds 11‐amino‐3‐methoxy‐8‐substituted‐12‐aryl‐8,9‐dihydro‐7H‐chromeno[2,3‐b]quinolin‐10(12H)‐one 4 were synthesized by cyclization of the intermediate enamines 3 in THF with K2CO3 /Cu2Cl2 as catalyst. The structures of all compounds were characterized by elemental analysis, IR, MS, and 1H NMR spectra. The crystal structure of compound 4i was determined by single‐crystal X‐ray diffraction analysis.  相似文献   

20.
A series of new chiral (S)‐3‐ary1‐6‐pyrrolidin‐2‐yl‐[1,2,4]triazolo[3,4‐b]thiadiazole (II1‐5), (S)‐1‐(3‐aryl‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazol‐6‐yl)‐ethylamine (II6‐8) and (S)‐1,2‐bis(3‐aryl‐[1,2,4]triazolo‐[3,4‐b][1,3,4]thiadiazol‐6‐yl)‐ethylamine (II9‐11) were prepared by the condensation of 3‐aryl‐4‐amino‐5‐mercapto‐1,2,4‐triazoles with different L‐amino acids in the presence of phosphorus oxychloride and evaluated for their antibacterial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号