首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
设计了一套船舶柴油机冷EGR系统,并对其控制系统进行了软件和硬件的设计,控制部分通过单片机控制伺服水泵的转速来调节冷却水的循环量,保证不同工况下的最佳EGR冷却温度,在船舶柴油机YC4F90L-C20上进行了试验,结果表明,与无EGR系统相比,该自控冷EGR系统在CO和HC的排放基本不变的情况下,可以有效的降低NOx的排放和烟度,保护了海洋环境。  相似文献   

2.
针对柴油机不同的工况对冷却水温度要求不同,原冷却系统不能随工况的变化自动调节温度,设计了柴油机智能冷却系统恒温控制系统。通过热平衡实验获得柴油机各工况最佳工作状态的冷却水温度和流量,利用单片机控制变频器水泵转速和电控三通旁通阀的开度对冷却水温度自动控制。实验结果表明:该系统可以随柴油机工况变化将冷却水温度恒定控制在最佳工作温度,达到了节油效果,最大节油率为5.4%,平均节油率为3.6%。  相似文献   

3.
为了提升柴油机应用过程有害废气排放控制的效果,提出基于 EGR 耦合米勒循环的柴油机排放控制技术。以燃油燃烧各阶段为基础,构建柴油机燃烧模型,分别深入分析 EGR 技术与米勒循环技术对废气排放的影响,衡量指标为 EGR 率与米勒度。以废气排放影响分析结果为依据,以排放控制效果最佳为目标,确定 EGR 技术与米勒循环技术的最佳耦合方案,实现柴油机废气排放的最佳控制。实验数据表明,应用 EGR 耦合米勒循环技术后,废气排放量低于实际废气排放量,并低于 EGR 技术与米勒循环技术对应排放量,充分证实了该技术具备较好的排放控制效果,为大气环境保护提供帮助。  相似文献   

4.
传统系统发送和接收水泵控制指令和工况信号时,受通信接口干扰信号影响,使得水泵动态响应调节时间较长,超调量较大。提出基于无位置传感器BLDCM的新能源汽车电子水泵智能控制系统。硬件方面,由无位置传感器BLDCM电机、控制器、对外接口,组成系统框架,利用电解电容,吸收通信接口外部干扰信号,利用控制器防护电路和滤波电路,抑制接口内部干扰信号,发送并接收电机工况信号和水泵控制指令;软件方面,采用矢量控制方式,根据BLDCM电机电压和转矩方程,确定电机运行控制量为转子角速度,比例积分调节转子角速度,改变电机转矩,间接控制水泵转矩和角速度。搭建系统测试平台,实验室内进行水泵冷却水加压循环,设置600、800、1 000 r/min电子水泵转速工况。实验结果表明,设计系统相比常规系统,缩短了水泵到达给定转速的调节时间,减小了超调量,改善了水泵动态加速性能。  相似文献   

5.
《机械科学与技术》2017,(9):1414-1420
以COMSOL Multiphysics有限元分析软件为工具,建立170SD30-SY型电主轴水冷系统有限元模型,并对不同水流量下水冷系统温度场进行仿真;搭建水冷系统温升实验平台,分别对不同转速下的电主轴水冷却系统参数与电主轴温度的关系进行实验。研究结果表明:不同转速下,随着冷却水流量的增加,电主轴温度有不同程度的降低;冷却水流量为0.28 m~3/h~0.30 m~3/h时,冷却效果均为最佳选择;同时,通过改变冷却水初始温度来控制电主轴温升具有更直接效果。  相似文献   

6.
根据增压柴油机废气再循环(EGR)系统的要求,采用动态矩阵控制(DMC)算法设计EGR系统控制器.通过仿真系统试验证实了所设计的控制器可以应用于柴油机EGR系统,并能够使EGR系统有效降低柴油机氮氧化物(NOx)的排放.  相似文献   

7.
根据增压柴油机废气再循环(EGR)系统的要求,采用动态矩阵控制(DMC)算法设计EGR系统控制器.通过仿真系统试验证实了所设计的控制器可以应用于柴油机EGR系统,并能够使EGR系统有效降低柴油机氮氧化物(NOx)的排放.  相似文献   

8.
针对柴油机氮氧化物排放污染的日益严重,提出基于模糊控制的柴油机EGR系统氮氧化物排气模型。分析了模糊控制系统的优点,建立了NOx排气模型,并且将此模型应用到模糊控制器中;将设计出来的模糊控制器应用到柴油机EGR模块中,在MATLAB仿真环境下进行仿真研究,给出相应的仿真图;并通过仿真结果验证,对柴油机NOx排放物进行了对比分析。结果表明:基于模糊控制的柴油机EGR模块对NOx的排放控制极为有效并且精确,通过ECU很好地控制了喷油规律,从而降低了柴油机NOx的排放,满足了国Ⅳ、国Ⅴ排放要求。  相似文献   

9.
废气再循环(EGR,Exhaust Gas Recirculation)是大幅降低整机排放污染物的有效办法,也是目前较为常用和有效的措施.废气再循环(EGR)就是通过将柴油机排出的废气重新引回到气缸内参与燃烧的装置,可更好地控制和减少其尾气中NOx的排放量.文中介绍了柴油机工作时产生NOx的机理和文曲利管降低柴油机NOx排放的原理,通过对安装有文曲利管的柴油机进行试验,分析废气再循环率对柴油机动力性能和NOx排放的影响.  相似文献   

10.
为了降低渔船用柴油机的NOx排放量,达到符合国际海事组织对船舶防止空气污染的规定中的NOx章程的规范。利用废气再循环原理设计了一套柴油机废气减排系统,以降低渔船用柴油机的NOx排放量。通过CFD数值模拟的方法对某柴油机的废气再循环系统进行了二维流场的数值模拟,以确定合理的废气回流比例。模拟过程使用不同的EGR阀门开度进行分析,得到了EGR阀门开度与EGR率之间的比例关系,为柴油机废气再循环系统的设计提供了理论依据。  相似文献   

11.
加装文丘里管的高压废气再循环(Exhaust gas re-circulation,EGR)进气系统,在兼顾柴油机经济性、动力性的前提下,研究该进气系统对NO_x排放的影响。根据一款柴油机的基本结构建立柴油机一维仿真计算模型和燃烧室的三维仿真计算模型。在对模型进行标定和对柴油机原机性能仿真计算的基础上,为进气系统引入文丘里管装置并对其结构参数进行优化设计。应用所建立的一维和三维柴油机模型,对文丘里管EGR系统柴油机的经济性、NO_x和Soot排放特性进行仿真计算研究,并对计算结果进行试验验证。研究结果表明,优化设计的文丘里管EGR系统可使柴油机在欧洲稳态循环(European steady state cycle,ESC)各工况下实现较为理想的EGR率,并在不明显影响柴油机燃油经济性的前提下,使NO_x排放量下降了约28.4%。文丘里管进气系统可以实现较为理想的高压EGR循环,在柴油机ESC工况下(怠速除外)能够达到较为理想的EGR率。  相似文献   

12.
In a typical cooling system of automotive engine, a mechanical water pump is used to control the flow rate of coolant. However, this traditional cooling system is not suitable for a high efficiency performance in terms of fuel economy and exhaust emission. Therefore, it is necessary to develop a new technology for engine cooling systems. These days, the electronic water pump is spotlighted as the new cooling system of an engine. The new cooling system can provide more flexible control of the coolant flow rate and the engine temperature, which used to be strongly relied on the engine driving conditions such as load and speed. In this study, an engine experiment was carried out on a New European Drive Cycle (NEDC) with a 2.7L diesel engine. The electric water pump operated by BLDC motor and the electronic valve were installed in the cooling system to control the coolant flow rate and temperature. This paper explains that the exhaust emissions were reduced with an increase in the engine temperature and a decrease in the coolant flow. From this experiment, we found that increasing coolant temperature had a significant effect on reducing the emissions (e.g. THC and CO). Decreasing coolant flow also affected the reduction of emissions. In contrast, NOx emission was observed to increase in these conditions. This paper was presented at the 7th JSME-KSME Thermal and Fluids Engineering Conference, Sapporo, Japan, October 2008. Kyung-Wook Choi received his B.S. degree in Mechanical Engineering from Hanyang University, Korea, in 2006. He is now working on a doctoral degree in Hanyang University. Kyung-Wook’s research interests include Hybrid Electric Vehicle, Internal Engine Combustion, and Engine Cooling System. Ki-bum Kim was awarded a bachelor’s degree in naval architecture and ocean engineering from Chung-Nam National University in the Republic of Korea. In August 2001, he began graduate study at the University of Florida. Kibum graduated with a Master of Science degree in mechanical engineering from the University of Florida in August 2003. He went on to earn his Ph.D. in mechanical engineering, also at the University of Florida, in August 2006. He is working as a research professor at Hanyang University. Ki-Hyung Lee is a Professor at the department of mechanical engineering in Hanyang University. He received his B.S and M.S degree in Hanyang University in 1983 and 1986. Then he graduated with a Ph.D. degree in mechanical Engineering at Kobe University, Japan in 1989. He worked as a research engineer at Nissan motor’s central technical center for 4 years.  相似文献   

13.
通过柴油发动机台架实验和行车实验,分析了不同工况下自制纳米WS2车用机油添加剂在柴油发动机中的应用效果。结果表明,在FC2000柴油发动机台架上应用时,纳米WS2车用机油添加剂在不同转速和不同负载下均能在一定程度上降低发动机油耗率,减少发动机尾气中NOx含量和颗粒物含量,并且当发动机转速为1 700r/min,负载为70N.m时,节油率最高为9.95%,颗粒物减排率最高为49.3%,而当发动机处于低速、高速、低载和高载等工况时,NOx减排率较高,最高达到36%;在柴油机大客车上应用时,纳米WS2车用机油添加剂使其耗油量下降约14.4%,并能在一定程度上降低发动机的运行噪声,使发动机的有害气体(NOx)排放减少34.8%~51%。综合表明纳米WS2车用机油添加剂具有良好的节能减排效果。  相似文献   

14.
The EGR system has been widely used to reduce nitrogen oxides (NOx) emission, to improve fuel economy and suppress knock by using the characteristics of charge dilution. However, as the EGR rate at a given engine operating condition increases, the combustion instability increases. The combustion instability increases cyclic variations resulting in the deterioration of engine performance and emissions. Therefore, the optimum EGR rate should be carefully determined in order to obtain the better engine performance and emissions. An experimental study has been performed to investigate the effects of EGR on combustion stability, engine performance, NOx and the other exhaust emissions from 1. 5 liter gasoline engine. Operating conditions are selected from the test result of the high speed and high acceleration region of SFTP mode which generates more NOx and needs higher engine speed compared to FTP-75 (Federal Test Procedure) mode. Engine power, fuel consumption and exhaust emissions are measured with various EGR rate. Combustion stability is analyzed by examining the variation of indicated mean effective pressure (COVimep) and the timings of maximum pressure (Pmax) location using pressure sensor. Engine performance is analyzed by investigating engine power and maximum cylinder pressure and brake specific fuel consumption (BSFC).  相似文献   

15.
In this study, experiments on the simultaneous reduction of smoke and NOx emissions of indirect-injection (IDI) diesel engines were conducted using a biodiesel fuel (BDF) and ethylene glycol mono-n-butyl ether (EGBE), which is an oxygenated fuel of mono-ethers, as a pre-processing method and by applying cooled EGR. A four-cylinder, water-cooled IDI diesel engine was used, while the engine performance and emission characteristics were considered using diesel fuel, BDF 100%, and a mixed fuel BDF and EGBE (maximum EGBE mixing ratio in mixed fuel: 20 vol-%). Results showed the BDF and the BDF and EGBE mix had significantly better smoke reduction effects than the diesel fuel. In particular, the use of the BDF and EGBE mix and the simultaneous application of 10% cooled EGR were confirmed to have reduced both smoke and NOx emissions.  相似文献   

16.
The effects of cooled external exhaust gas recirculation (EGR) on the combustion and emission performance of diesel fuel homogeneous charge compression ignition (HCCI) are studied. Homogeneous mixture is formed by injecting fuel in-cylinder in the negative valve overlap (NVO) period. So, the HCCI combustion which has low NOx and smoke emission is achieved. Cooled external EGR can delay the start of combustion effectively, which is very useful for high cetane fuel (diesel) HCCI, because these fuels can easily self-ignition, which makes the start of combustion more early. External EGR can avoid the knock combustion of HCCI at high load which means that the EGR can expand the high load limit. HCCI maintains low smoke emission at various EGR rate and various load compared with conventional diesel engine because there is no fuel-rich area in cylinder..  相似文献   

17.
废气再循环是一种简单有效的降低氮氧化物的方法。介绍了柴油机电控EGR的匹配与标定,探讨了空气系统的大闭环进气量控制和小闭环EGR阀位置控制方式。结果表明通过这种控制匹配方式能够比较好地实现空气系统的静态稳定性和动态跟随性,并能够满足柴油机欧IV排放对空气系统的要求。  相似文献   

18.
Diesel emission regulations have recently become more severe. An important goal in diesel engine research is the development of methods to reduce the emissions of NOx and PM (particulate matter). Cooled EGR (exhaust gas recirculation) system has been widely used to reduce the NOx and PM emissions of light-duty diesel engines. In this study, numerical analyses, rig tests and engine tests were performed to assess how changes in internal shape characteristics can improve the heat exchange efficiencies of EGR coolers. The heat exchange efficiencies of EGR coolers have been numerically and experimentally measured during a fouling process. The results show that the second type of oval EGR cooler tested (oval #2) exhibited better heat exchange efficiency than either the first type of oval EGR cooler was tested (oval #1) or the shell and tube cooler examined. The turbulence generated in exhaust gas flows by the wavy-finned design of the oval EGR coolers facilitated PM desorption that allows these coolers to self-purify. With respect to the two similar oval EGR coolers, the cooler with fin pitch 4 mm has better efficiency than the cooler with fin pitch 6 mm due to differences in the heat transfer areas of these coolers. Both CFD analyses involving extreme conditions of engine operation and engine fouling tests involving conditions experienced during vehicular operation indicate that the two oval coolers differed by less than 4% with respect to both initial heat transfer efficiency and heat transfer efficiency after a 78-hour fouling test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号