首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The low-temperature superplastic (SP) flow behavior of two lots of Ti-6Al-4V sheet, each with an ultrafine microstructure, was established by performing tension tests at temperatures of 775 °C and 815 °C and true strain rates of 10−4 and 10−3 s−1. The as-received microstructures of the two materials comprised either equiaxed or slightly elongated alpha particles in a beta matrix. The material with equiaxed alpha particles exhibited flow hardening, which was correlated with concurrent (dynamic) coarsening. The rate of dynamic coarsening was rationalized in terms of static coarsening measurements and the enhancement of kinetics due to pipe diffusion. By contrast, the material with initially elongated alpha particles exhibited comparable flow hardening at the lower strain rate but a complex, near-steady-state behavior at the higher strain rate. These latter observations were explained on the basis of the evolution of the alpha particle shape and size during straining; dynamic coarsening or dynamic spheroidization was concluded to be most important at the lower and higher strain rates, respectively. The plastic flow behavior was interpreted in the context of a long-wavelength flow localization analysis.  相似文献   

2.
Ultrafine grain sizes were introduced into samples of an Al-3 pct Mg solid solution alloy and a cast Al-Mg-Li-Zr alloy using the process of equal-channel angular (ECA) pressing. The Al-3 pct Mg alloy exhibited a grain size of ∼0.23 μm after pressing at room temperature to a strain of ∼4, but there was significant grain growth when the pressed material was heated to temperatures above ∼450 K. The Al-Mg-Li-Zr alloy exhibited a grain size of ∼1.2 μm, and the microstructure was heterogeneous after pressing to a strain of ∼4 at 673 K and homogeneous after pressing to a strain of ∼8 at 673 K with an additional strain of ∼4 at 473 K. The heterogeneous material exhibited superplastic-like flow, but the homogeneous material exhibited high-strain-rate superplasticity with an elongation of >1000 pct at 623 K at a strain rate of 10−2 s−1. It is concluded that a homogeneous microstructure is required, and therefore a high pressing strain, in order to attain high-strain-rate superplasticity (HSR SP) in ultrafine-grained materials. This article is based on a presentation made in the symposium “Mechanical Behavior of Bulk Nanocrystalline Solids,” presented at the 1997 Fall TMS Meeting and Materials Week, September 14–18, 1997, in Indianapolis, Indiana, under the auspices of the Mechanical Metallurgy (SMD), Powder Materials (MDMD), and Chemistry and Physics of Materials (EMPMD/SMD) Committees.  相似文献   

3.
The thermomechanical response of Ti-6Al-4V modified with 2.9 pct B produced by a blended powder metallurgy route was studied with isothermal constant strain-rate hot compression tests in the temperature range 850 °C to 1200 °C and strain rate range 10−3 to 10 s−1. Detailed analyses of the flow stress data were conducted to identify various microstructural deformation and damage mechanisms during hot working by applying available materials modeling techniques. In the α + β phase field, cavitation at the matrix/TiB interfaces and TiB particle fracture occurs at low strain rates (<10−1 s−1), while adiabatic shear banding also occurs at high strain rates. At low strain rates, the β phase deforms superplastically due to the stabilization of a fine grain size by the TiB particles. Grain boundary and matrix/TiB interface sliding with simultaneous diffusional accommodation are observed to contribute to the β superplasticity. The deformation behavior at high strain rates in the β-phase field is similar to that of the α + β phase field, with microstructural manifestations of extensive cavitation at the matrix/TiB interfaces and TiB particle fracture.  相似文献   

4.
Tensile tests were conducted on a Ni-30 (at. pct) Al-20Fe-0.05Zr intermetallic alloy in the temperature range 300 to 1300 K under initial strain rates varying between 10−6 and 10−3 s−1. The alloy did not exhibit any room-temperature ductility and failed at an average stress of about 710 MPa. The brittle-to-ductile transition temperature (BDTT), which was higher than those for Ni-50Al and Ni-50Al-0.05Zr, was relatively insensitive to strain rate and varied between about 960 K at a nominal strain rate of 1.4×10−5s−1 to about 990 K at a strain rate of 1.4× 10−3s−1. Detailed observations of the fracture surfaces revealed that cleavage failure had originated at a pre-existing defect in all instances, where the fracture stress, σ f , correlated extremely well with the square root of the average defect size, 2c, in accordance with linear elastic fracture mechanics. The average value of the critical stress intensity factor estimated from the σ f − 2c data varied between 4 to 7 MPa m1/2. A comparison of the fracture map for this intermetallic alloy with those for face-centered cubic (fcc) and refractory body-centered cubic (bcc) metals, alkali halides, refractory oxides, and covalent-bonded ceramics indicated that the low-temperature brittleness of the alloy is, in part, due to mixed atomic bonding.  相似文献   

5.
6.
A submicrometer-grained structure was introduced in a commercial 5083 Al alloy by imposing an effective strain of ∼8 through equal channel angular pressing. In order to examine the low-temperature superplastic behavior, the as-equal channel angular pressed (as-ECAP) samples were tensile tested in the strain rate range of 10−5 to 10−2 s−1 at temperatures of 498 to 548 K corresponding to 0.58 to 0.65 T m, where T m is the incipient melting point. The mechanical data of the alloy at 498 and 548 K exhibited a sigmoidal behavior in a double logarithmic plot of the maximum true stress vs true strain rate. The strain rate sensitivity was 0.1 to 0.2 in the low- and high-strain rate regions and 0.4 in the intermediate-strain rate region, indicating the potential for superplasticity. At 523 K, instead of the sigmoidal behavior, a strain rate sensitivity of 0.4 was maintained to low strain rates. A maximum elongation of 315 pct was obtained at 548 K and 5×10−4 s−1. The activation energy for deformation in the intermediate-strain rate region was estimated as 63 kJ/mol. Low-temperature superplasticity of the ultrafine grained 5083 Al alloy was attributed to grain boundary sliding that is rate-controlled by grain boundary diffusion, with a low activation energy associated with nonequilibrium grain boundaries. Cavity stringers parallel to the tensile axis were developed during deformation, and the failure occurred in a quasi-brittle manner with moderately diffusive necking.  相似文献   

7.
The dynamic-coarsening behavior of Ti-6Al-4V with an equiaxed α microstructure was established via isothermal hot-compression testing of cylindrical samples cut from an ultra-fine-grain-size (UFG) billet. Compression experiments were conducted at 900 and 955 °C, strain rates between 10−4 and 1 s−1, and imposed true strains between 0 and 1.4. Following deformation, quantitative metallography revealed marked coarsening of the primary α particles at low strain rates (10−4 and 10−3 s−1). The dynamic-coarsening rate followed rn vs time kinetics, in which n was between 2 and 3, or behavior between those of bulk-diffusion and interface-reaction controlled. An examination of the temperature and strain-rate dependence of theoretical coarsening rates, however, strongly suggested that bulk diffusion (with n=3) was more important. The dynamic-coarsening behavior was also interpreted in the context of the observed plastic-flow behavior. At low strain rates, high values of the strain-rate sensitivity (m>0.5) and the overall shape of log stress-log strain rate plots indicated that the majority of the imposed strain was accommodated by grain-boundary sliding (gbs) and only a small amount via dislocation glide/climb processes. In addition, an analysis of the flow hardening that accompanied dynamic coarsening indicated that the flow stress varied approximately linearly with the α particle size, thus providing support for models based on gbs accommodation by dislocation activity in grain-mantle regions.  相似文献   

8.
The hot workability of a near gamma titanium aluminide alloy, Ti-49.5Al-2.5Nb-1.1Mn, was assessed in both the cast and the wrought conditions through a series of tension tests conducted over a wide range of strain rates (10−4 to 100 s−1) and temperatures (850 °C to 1377 °C). Tensile flow curves for both materials exhibited sharp peaks at low strain levels followed by pronounced necking and flow localization at high strain levels. A phenomenological analysis of the strain rate and temperature dependence of the peak stress data yielded an average value of the strain rate sensitivity equal to 0.21 and an apparent activation energy of ∼411 kJ/mol. At low strain rates, the tensile ductility displayed a maximum at ∼ 1050 °C to 1150 °C, whereas at high strain rates, a sharp transition from a brittle behavior at low temperatures to a ductile behavior at high temperatures was noticed. Dynamic recrystallization of the gamma phase was the major softening mechanism controlling the growth and coalescence of cavities and wedge cracks in specimens deformed at strain rates of 10−4 to 10−2 s−1 and temperatures varying from 950 °C to 1250 °C. The dynamically recrystallized grain size followed a power-law relationship with the Zener-Hollomon parameter. Deformation at temperatures higher than 1270 °C led to the formation of randomly oriented alpha laths within the gamma grains at low strain levels followed by their reorientation and evolution into fibrous structures containing γ + α phases, resulting in excellent ductility even at high strain rates.  相似文献   

9.
A study of high temperature deformation of a commercial aluminum alloy has been undertaken through tensile tests at strain rates ranging from 5.6×10−5 s−1 to 5.6×10−2 s−1 and load relaxation testing in the temperature range 473 to 873 K. Experiments have established that maximum ductility is reached at about 623 K and at maximum strain rates. Maximum fracture ductility corresponds to minimum uniform elongation. The deformation and fracture mechanisms operating in the temperature range 473 to 573 K seem to differ from those between 623 K and 823 K; different strain rate sensitivities are also observed. Dynamic recovery is the dominant softening mechanism in high temperature plastic deformation—that is, a thermally activated process whose kinetics can be suitably described by an empirical power relation.  相似文献   

10.
The effect of friction stir processing on the superplastic behavior of extruded Al-4Mg-1Zr was examined at 350 °C to 600 °C and at initial strain rates of 1×10−3 to 1 s−1. A combination of a fine grain size of 1.5 μm and high-angle grain boundaries in the friction stir-processed (FSP) alloy led to considerably enhanced superplastic ductility, much-reduced flow stress, and a shift to a higher optimum strain rate and lower optimum temperature. The as-extruded alloy exhibited the highest superplastic ductility of 1015 pct at 580 °C and an initial strain rate of 1×10−2s−1, whereas a maximum elongation of 1280 pct was obtained at 525 °C and an initial strain rate of 1×10−1s−1 for the FSP alloy. The FSP alloy exhibited enhanced superplastic deformation kinetics compared to that predicted by the constitutive relationship for superplasticity in fine-grained aluminum alloys. A possible origin for enhanced superplastic deformation kinetics in the FSP condition is proposed.  相似文献   

11.
The present investigation was carried out in the context of the internal-variable theory of inelastic deformation and the dynamic-materials model (DMM), to shed light on the high-temperature deformation mechanisms in TiAl. A series of load-relaxation tests and tensile tests were conducted on a fine-grained duplex gamma TiAl alloy at temperatures ranging from 800 °C to 1050 °C. Results of the load-relaxation tests, in which the deformation took place at an infinitesimal level (ε ≅ 0.05), showed that the deformation behavior of the alloy was well described by the sum of dislocation-glide and dislocation-climb processes. To investigate the deformation behavior of the fine-grained duplex gamma TiAl alloy at a finite strain level, processing maps were constructed on the basis of a DMM. For this purpose, compression tests were carried out at temperatures ranging from 800 °C to 1250 °C using strain rates ranging from 10 to 10−4/s. Two domains were identified and characterized in the processing maps obtained at finite strain levels (0.2 and 0.6). One domain was found in the region of 980 °C and 10−3/s with a peak efficiency (maximum efficiency of power dissipation) of 48 pct and was identified as a domain of dynamic recrystallization (DRx) from microstructural observations. Another domain with a peak efficiency of 64 pct was located in the region of 1250 °C and 10−4/s and was considered to be a domain of superplasticity. This article is based on a presentation made in the symposium entitled “Fundamentals of Structural Intermetallics,” presented at the 2002 TMS Annual Meeting, February 21–27, 2002, in Seattle, Washington, under the auspices of the ASM and TMS Joint Committee on Mechanical Behavior of Materials.  相似文献   

12.
A study of the high-temperature deformation behavior of a binary α 2+γTi-47 at. pct Al-3 at. pct Cr alloy was undertaken. The alloy was produced by induction melting and exhibited a structure of coarse columnar grains oriented in the radial direction. After a solution treatment at 1653 K for 3600 seconds and aging at 1223 K for 28,800 seconds, a nearly lamellar structure was formed. Deformation behavior was investigated by compression-strain-rate-change tests at strain rates ranging from 10−6 to 10−3 s−1 and temperatures ranging from 1073 to 1373 K. This alloy shows at low temperature/high stress a stress exponent of about 5. The deformation behavior is explained in this regimen by a dislocation climb mechanism, which includes a threshold stress. Finally, at the lowest stress levels and highest temperatures of testing, a stress exponent of about 3 is observed, which suggests that deformation is controlled by the viscous glide of dislocations.  相似文献   

13.
Alloy 625 ammonia cracker tubes were service exposed for 60,000 hours at 873 K. These were then subjected to a solution-annealing treatment at 1473 K for 0.5 hours. The effects of temperature and strain rate on the tensile properties of the solution-annealed alloy were examined in the temperature range of 300 to 1023 K, employing the strain rates in the range of 3×10−5 s−1 to 3×10−3 s−1. At intermediate temperatures (523 to 923 K), various manifestations of dynamic strain aging (DSA) such as serrated flow, peaks, and plateaus in the variations of yield strength (YS) and ultimate tensile strength (UTS) and work-hardening rate with temperature were observed. The activation energy for serrated flow (Q) was determined by employing various methodologies for T<823 K, where a normal Portevien-Le Chatelier effect (PLE) was observed. The value of Q was found to be independent of the method employed. The average Q value of 98 kJ/mol was found to be in agreement with that for Mo migration in a Ni matrix. At elevated temperatures (T≥823 K), type-C serrations and an inverse PLE was noticed. The decrease in uniform elongation beyond 873 K for 3×10−5 s−1 and 3×10−3 s−1 and beyond 923 K for 3×10−4 s−1 strain rates seen in this alloy has been ascribed to reduction in ductility due to precipitation of carbides and δ phase on the grain boundaries.  相似文献   

14.
An Al-3 pct Mg-0.2 pct Sc alloy was fabricated by casting and subjected to equal-channel angular pressing to reduce the grain size to ∼0.2 μm. Very high tensile elongations were achieved in this alloy at temperatures over the range from 573 to 723 K, with elongations up to >2000 pct at temperatures of 673 and 723 K and strain rates at and above 10−2 s−1. By contrast, samples of the same alloy subjected to cold rolling (CR) yielded elongations to failure of <400 pct at 673 K. An analysis of the experimental data for the equal-channel angular (ECA)-pressed samples shows consistency with conventional superplasticity including an activation energy for superplastic flow which is within the range anticipated for grain boundary diffusion in pure Al and interdiffusion in Al-Mg solid solution alloys.  相似文献   

15.
A commercial Al-6 pct Mg-0.3 pct Sc-0.3 pct Mn alloy subjected to equal-channel angular extrusion (ECAE) at 325 °C to a total strain of about 16 resulted in an average grain size of about 1 μm. Superplastic properties and microstructural evolution of the alloy were studied in tension at strain rates ranging from 1.4 × 10−5 to 1.4 s−1 in the temperature interval 250 °C to 500 °C. It was shown that this alloy exhibited superior superplastic properties in the wide temperature range 250 °C to 500 °C at strain rates higher than 10−2 s−1. The highest elongation to failure of 2000 pct was attained at a temperature of 450 °C and an initial strain rate of 5.6 × 10−2 s−1 with the corresponding strain rate sensitivity coefficient of 0.46. An increase in temperature from 250 °C to 500 °C resulted in a shift of the optimal strain rate for superplasticity, at which highest ductility appeared, to higher strain rates. Superior superplastic properties of the commercial Al-Mg-Sc alloy are attributed to high stability of ultrafine grain structure under static annealing and superplastic deformation at T ≤ 450 °C. Two different fracture mechanisms were revealed. At temperatures higher than 300 °C or strain rates less than 10−1 s−1, failure took place in a brittle manner almost without necking, and cavitation played a major role in the failure. In contrast, at low temperatures or high strain rates, fracture occurred in a ductile manner by localized necking. The results suggest that the development of ultrafine-grained structure in the commercial Al-Mg-Sc alloy enables superplastic deformation at high strain rates and low temperatures, making the process of superplastic forming commercially attractive for the fabrication of high-volume components.  相似文献   

16.
An Al-3 pct Mg-0.2 pct Sc alloy was fabricated by casting and subjected to equal-channel angular pressing to reduce the grain size to ∼0.2 μm. Very high tensile elongations were achieved in this alloy at temperatures over the range from 573 to 723 K, with elongations up to >2000 pct at temperatures of 673 and 723 K and strain rates at and above 10−2 s−1. By contrast, samples of the same alloy subjected to cold rolling (CR) yielded elongations to failure of <400 pct at 673 K. An analysis of the experimental data for the equal-channel angular (ECA)—pressed samples shows consistency with conventional superplasticity including an activation energy for superplastic flow which is within the range anticipated for grain boundary diffusion in pure Al and interdiffusion in Al−Mg solid solution alloys. MINORU NEMOTO, formerly Professor, Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University.  相似文献   

17.
In the present work, IMI 834, a near α titanium alloy was evaluated for tensile and low cycle fatigue (LCF, with and without hold time) behavior at 873K. Tensile tests were performed at the initial strain rate of 4 × 10?3 s?1 at 873K. Fully reversed, total strain control LCF tests were conducted at total strain amplitude of ± 1.0% at constant strain rate of 4 × 10?3 s?1 at 873K. For LCF tests with dwell, hold time were imposed in tension, compression and tension — compression mode with varied hold times of 60 sec, 120 sec, 180 secs. In LCF tests without dwell, the Coffin-Manson plot showed dual slope behavior at 873K. In LCF tests with dwell, at 873K, tensile, compressive and tensile — compressive hold time tests have shown lower LCF resistance than that of the tests without hold time. Among the three modes of hold times employed, the tensile hold has exhibited the highest LCF resistance followed by tensile — compressive and compressive hold time tests. In the present study, tensile hold introduces compressive mean stresses while the compressive hold introduces tensile mean stresses. Further, the creep effect of stress relaxation was examined at 873K in order to explain the hold time effects.  相似文献   

18.
Tensile tests were carried out at temperatures of 673 to 773 K and strain rates of 1×10−3 to 1 s−1 on an ultrafine-grained (UFG) 5083 Al alloy containing 0.2 wt pct Sc fabricated by equal-channel angular pressing, in order to examine its high-strain-rate superplastic characteristics. The mechanical data for the alloy at 723 and 773 K exhibited a sigmoidal behavior in a double logarithmic plot of the maximum true stress vs true strain rate. The strain-rate sensitivity was 0.25 to 0.3 in the low-( <5×10−3 s−1) and high- ( >5×10−2 s−1) strain-rate regions, and ∼0.5 in the intermediate-strain-rate region (5×10−3 s−1< <5 × 10−2 s−1). The maximum elongation to failure of ∼740 pct was obtained at 1×10−2 s−1 and 773 K. By contrast, no sigmoidal behavior was observed at 673 K. Instead, the strain-rate sensitivity of 0.3 was measured in both intermediate-and low-strain-rate regions, but it was about 0.25 in the high-strain-rate region. High-strain-rate superplasticity (HSRS) in the intermediate-strain-rate region at 723 and 773 K was dominated by grain-boundary sliding (GBS) associated with continuous recrystallization and preservation of fine recrystallized grains by second-phase particles. However, the activation energy for HSRS of the present alloy was lower than that predicted for any standard high-temperature deformation mechanism. The low activation energy was likely the result of the not-fully equilibrated microstructure due to the prior severe plastic deformation (SPD). For 673 K, the mechanical data and the microstructural examination revealed that viscous glide was a dominant deformation mechanism in the intermediate- and low-strain-rate regions. Deformation in the high-strain-rate region at all testing temperatures was attributed to dislocation breakaway from solute atmospheres.  相似文献   

19.
Effects of prior thermomechanical treatments on the superplasticity of a 25 wt pct Cr-7 wt pct Ni-3 wt pct Mo-0.14 wt pct N δ/γ duplex stainless steel have been studied by means of hot tensile testing with constant crosshead speeds. The objective is to increase the strain rate suitable for superplasticity. The strain rate is found to be markedly increased by a special prior treatment,i.e., solution treatment at temperatures in the δ single-phase region with subsequent heavy cold-rolling. In hot tensile tests at 1273 K, elongations greater than 1000 and 300 pct were observed at initial strain rates (έ) of 10−3 to 10−1 s−1 and 1 x 100 s−1, respectively. The results for strain rates 〈10−1 s−1 can be explained in terms of a structural superplastic effect due to grain refinement. In the case of έ 〉 10−1 s−1, transformation superplastic effects due to γ-phase precipitation from the σ-ferrite matrix are also important, especially in the early stages of deformation. In the equiaxedδ/γ microduplex structures during stable superplastic deformation, there exists a mixture of two different structures,i.e., dislocated and recovered/ recrystallized δ grains with a homogeneous dispersion of dislocation-free γ particles. This result shows that dynamic recrystallization ofδ grains occurs locally and intermittently due to the dispersion of relatively hardγ particles. The apparent average grain growth rate during deformation is small compared to static grain growth, because grain refinement due to dynamic recrystallization reduces the superplasticity-enhanced grain growth.  相似文献   

20.
The effect of strain-path reversal on the kinetics of dynamic spheroidization during subtransus hot working was determined for Ti-6Al-4V with a colony α structure. Isothermal torsion tests were conducted at a temperature of 815 °C and a strain rate of 0.001 s−1; strain-path reversals were achieved by applying forward and reverse torsion sequentially. The kinetics of spheroidization were measured as a function of the local (macroscopic) strain for monotonic-deformation, reversed-torsion, and double-reversed-torsion tests. Strain-path reversal led to a reduction in the spheroidization kinetics compared with monotonic deformation for a given total strain. The slower rate of dynamic spheroidization associated with strain-path reversals was ascribed to a reduced rate of sub-boundary formation/lower sub-boundary energies, which drive the boundary splitting process, and less sharp α/β interface curvatures, which control the coarsening process that also contributes to spheroidization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号