首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DC and RF characteristics of Ga/sub 0.49/In/sub 0.51/P-In/sub 0.15/Ga/sub 0.85/As enhancement- mode pseudomorphic HEMTs (pHEMTs) are reported for the first time. The transistor has a gate length of 0.8 /spl mu/m and a gate width of 200 /spl mu/m. It is found that the device can be operated with gate voltage up to 1.6 V, which corresponds to a high drain-source current (I/sub DS/) of 340 mA/mm when the drain-source voltage (V/sub DS/) is 4.0 V. The measured maximum transconductance, current gain cut-off frequency, and maximum oscillation frequency are 255.2 mS/mm, 20.6 GHz, and 40 GHz, respectively. When this device is operated at 1.9 GHz under class-AB bias condition, a 14.7-dBm (148.6 mW/mm) saturated power with a power-added efficiency of 50% is achieved when the drain voltage is 3.5 V. The measured F/sub min/ is 0.74 dB under I/sub DS/=15 mA and V/sub DS/=2 V.  相似文献   

2.
A low-voltage single power supply enhancement-mode InGaP-AlGaAs-InGaAs pseudomorphic high-electron mobility transistor (PHEMT) is reported for the first time. The fabricated 0.5/spl times/160 /spl mu/m/sup 2/ device shows low knee voltage of 0.3 V, drain-source current (I/sub DS/) of 375 mA/mm and maximum transconductance of 550 mS/mm when drain-source voltage (V/sub DS/) was 2.5 V. High-frequency performance was also achieved; the cut-off frequency(F/sub t/) is 60 GHz and maximum oscillation frequency(F/sub max/) is 128 GHz. The noise figure of the 160-/spl mu/m gate width device at 17 GHz was measured to be 1.02 dB with 10.12 dB associated gain. The E-mode InGaP-AlGaAs-InGaAs PHEMT exhibits a high output power density of 453 mW/mm with a high linear gain of 30.5 dB at 2.4 GHz. The E-mode PHEMT can also achieve a high maximum power added efficiency (PAE) of 70%, when tuned for maximum PAE.  相似文献   

3.
We report, to our knowledge, the best high-temperature characteristics and thermal stability of a novel /spl delta/-doped In/sub 0.425/Al/sub 0.575/As--In/sub 0.65/Ga/sub 0.35/As--GaAs metamorphic high-electron mobility transistor. High-temperature device characteristics, including extrinsic transconductance (g/sub m/), drain saturation current density (I/sub DSS/), on/off-state breakdown voltages (BV/sub on//BV/sub GD/), turn-on voltage (V/sub on/), and the gate-voltage swing have been extensively investigated for the gate dimensions of 0.65/spl times/200 /spl mu/m/sup 2/. The cutoff frequency (f/sub T/) and maximum oscillation frequency (f/sub max/), at 300 K, are 55.4 and 77.5 GHz at V/sub DS/=2 V, respectively. Moreover, the distinguished positive thermal threshold coefficient (/spl part/V/sub th///spl part/T) is superiorly as low as to 0.45 mV/K.  相似文献   

4.
The influences of (NH/sub 4/)/sub 2/S/sub x/ treatment on an AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor (PHEMT) are studied and demonstrated. Upon the sulfur passivation, the studied device exhibits better temperature-dependent dc and microwave characteristics. Experimentally, for a 1/spl times/100 /spl mu/m/sup 2/ gate/dimension PHEMT with sulfur passivation, the higher gate/drain breakdown voltage of 36.4 (21.5) V, higher turn-on voltage of 0.994 (0.69) V, lower gate leakage current of 0.6 (571) /spl mu/A/mm at V/sub GD/=-22 V, improved threshold voltage of -1.62 (-1.71) V, higher maximum transconductance of 240 (211) mS/mm with 348 (242) mA/mm broad operating regime (>0.9g/sub m,max/), and lower output conductance of 0.51 (0.53) mS/mm are obtained, respectively, at 300 (510) K. The corresponding unity current gain cutoff frequency f/sub T/ (maximum oscillation frequency f/sub max/) are 22.2 (87.9) and 19.5 (59.3) GHz at 250 and 400 K, respectively, with considerably broad operating regimes (>0.8f/sub T/,f/sub max/) larger than 455 mA/mm. Moreover, the relatively lower variations of device performances over wide temperature range (300/spl sim/510 K) are observed.  相似文献   

5.
We report on a double-pulse doped, double recess In/sub 0.35/Al/sub 0.65/As-In/sub 0.35/Ga/sub 0.65/As metamorphic high electron mobility transistor (MHEMT) on GaAs substrate. This 0.15-/spl mu/m gate MHEMT exhibits excellent de characteristics, high current density of 750 mA/mm, extrinsic transconductance of 700 mS/mm. The on and off state breakdown are respectively of 5 and 13 V and defined It gate current density of 1 mA/mm. Power measurements at 60 GHz were performed on these devices. Biased between 2 and 5 V, they demonstrated a maximum output power of 390 mW/mm at 3.1 V of drain voltage with 2.8 dB power gain and a power added efficiency (PAE) of 18%. The output power at 1 dB gain compression is still of 300 mW/mm. Moreover, the linear power gain is of 5.2 dB. This is to our knowledge the best output power density of any MHEMT reported at this frequency.  相似文献   

6.
Metal-insulator-metal (MIM) capacitors with (HfO/sub 2/)/sub 1-x/(Al/sub 2/O/sub 3/)/sub x/ high-/spl kappa/ dielectric films were investigated for the first time. The results show that both the capacitance density and voltage/temperature coefficients of capacitance (VCC/TCC) values decrease with increasing Al/sub 2/O/sub 3/ mole fraction. It was demonstrated that the (HfO/sub 2/)/sub 1-x/(Al/sub 2/O/sub 3/)/sub x/ MIM capacitor with an Al/sub 2/O/sub 3/ mole fraction of 0.14 is optimized. It provides a high capacitance density (3.5 fF//spl mu/m/sup 2/) and low VCC values (/spl sim/140 ppm/V/sup 2/) at the same time. In addition, small frequency dependence, low loss tangent, and low leakage current are obtained. Also, no electrical degradation was observed for (HfO/sub 2/)/sub 1-x/(Al/sub 2/O/sub 3/)/sub x/ MIM capacitors after N/sub 2/ annealing at 400/spl deg/C. These results show that the (HfO/sub 2/)/sub 0.86/(Al/sub 2/O/sub 3/)/sub 0.14/ MIM capacitor is very suitable for capacitor applications within the thermal budget of the back end of line process.  相似文献   

7.
We fabricated 30-nm gate pseudomorphic channel In/sub 0.7/Ga/sub 0.3/As-In/sub 0.52/Al/sub 0.48/As high electron mobility transistors (HEMTs) with reduced source and drain parasitic resistances. A multilayer cap structure consisting of Si highly doped n/sup +/-InGaAs and n/sup +/-InP layers was used to reduce these resistances while enabling reproducible 30-nm gate process. The HEMTs also had a laterally scaled gate-recess that effectively enhanced electron velocity, and an adequately long gate-channel distance of 12nm to suppress gate leakage current. The transconductance (g/sub m/) reached 1.5 S/mm, and the off-state breakdown voltage (BV/sub gd/) defined at a gate current of -1 mA/mm was -3.0 V. An extremely high current gain cutoff frequency (f/sub t/) of 547 GHz and a simultaneous maximum oscillation frequency (f/sub max/) of 400 GHz were achieved: the best performance yet reported for any transistor.  相似文献   

8.
The properties of doped-channel field-effect transistors (DCFET) have been thoroughly investigated on Al/sub x/Ga/sub 1-x/As/InGaAs (x= 0.3, 0.5, 0.7, 1) heterostructures with various Al mole fractions. In this study, we observed that by introducing a 200-/spl Aring/-thick Al/sub 0.5/Ga/sub 0.5/As (x=0.5) Schottky layer can enhance the device power performance, as compared with the conventional x=0.3 AlGaAs composition system. However, a degradation of the device power performance was observed for further increasing the Al mole fractions owing to their high sheet resistance and surface states. Therefore, Al/sub 0.5/Ga/sub 0.5/As Schottky layer design provides a good opportunity to develop a high power device for power amplifier applications.  相似文献   

9.
Al/sub 0.4/Ga/sub 0.6/N/GaN heterostructure field-effect transistors (HFETs) with an AlGaN barrier thickness of 8 nm and a gate length (L/sub G/) of 0.06-0.2 /spl mu/m were fabricated on a sapphire substrate. We employed two novel techniques, which were thin, high-Al-composition AlGaN barrier layers and SiN gate-insulating, passivation layers formed by catalytic chemical vapor deposition, to enhance high-frequency device characteristics by suppressing the short channel effect. The HFETs with L/sub G/=0.06-0.2 /spl mu/m had a maximum drain current density of 1.17-1.24 A/mm at a gate bias of +1.0 V and a peak extrinsic transconductance of 305-417 mS/mm. The current-gain cutoff frequency (f/sub T/) was 163 GHz, which is the highest value to have been reported for GaN HFETs. The maximum oscillation frequency (f/sub max/) was also high, and its value derived from the maximum stable gain or unilateral gain was 192 or 163 GHz, respectively.  相似文献   

10.
We report a novel approach in fabricating high-performance enhancement mode (E-mode) AlGaN/GaN HEMTs. The fabrication technique is based on fluoride-based plasma treatment of the gate region in AlGaN/GaN HEMTs and post-gate rapid thermal annealing with an annealing temperature lower than 500/spl deg/C. Starting with a conventional depletion-mode HEMT sample, we found that fluoride-based plasma treatment can effectively shift the threshold voltage from -4.0 to 0.9 V. Most importantly, a zero transconductance (g/sub m/) was obtained at V/sub gs/=0 V, demonstrating for the first time true E-mode operation in an AlGaN/GaN HEMT. At V/sub gs/=0 V, the off-state drain leakage current is 28 /spl mu/A/mm at a drain-source bias of 6 V. The fabricated E-mode AlGaN/GaN HEMTs with 1 /spl mu/m-long gate exhibit a maximum drain current density of 310 mA/mm, a peak g/sub m/ of 148 mS/mm, a current gain cutoff frequency f/sub T/ of 10.1 GHz and a maximum oscillation frequency f/sub max/ of 34.3 GHz.  相似文献   

11.
High-performance AlGaN/GaN high electron-mobility transistors with 0.18-/spl mu/m gate length have been fabricated on a sapphire substrate. The devices exhibited an extrinsic transconductance of 212 mS/mm, a unity current gain cutoff frequency (f/sub T/) of 101 GHz, and a maximum oscillation frequency (f/sub MAX/) of 140 GHz. At V/sub ds/=4 V and I/sub ds/=39.4 mA/mm, the devices exhibited a minimum noise figure (NF/sub min/) of 0.48 dB and an associated gain (Ga) of 11.16 dB at 12 GHz. Also, at a fixed drain bias of 4 V with the drain current swept, the lowest NFmin of 0.48 dB at 12 GHz was obtained at I/sub ds/=40 mA/mm, and a peak G/sub a/ of 11.71 dB at 12 GHz was obtained at I/sub ds/=60 mA/mm. With the drain current held at 40 mA/mm and drain bias swept, the NF/sub min/,, increased almost linearly with the increase of drain bias. Meanwhile, the Ga values decreased linearly with the increase of drain bias. At a fixed bias condition (V/sub ds/=4 V and I/sub ds/=40 mA/mm), the NF/sub min/ values at 12 GHz increased from 0.32 dB at -55/spl deg/C to 2.78 dB at 200/spl deg/C. To our knowledge, these data represent the highest f/sub T/ and f/sub MAX/, and the best microwave noise performance of any GaN-based FETs on sapphire substrates ever reported.  相似文献   

12.
The uniformly doped and the /spl delta/-doped In/sub 0.52/Al/sub 0.48/As/In/sub 0.6/Ga/sub 0.4/As metamorphic high-electron mobility transistors (MHEMTs) were fabricated, and the dc characteristics and the third-order intercept point (IP3) of these devices were measured and compared. Due to more uniform electron distribution in the quantum-well region, the uniformly doped MHEMT exhibits a flatter transconductance (G/sub m/) versus drain-to-source current (I/sub DS/) curve and much better linearity with higher IP3 and higher IP3-to-P/sub dc/ ratio as compared to the /spl delta/-doped MHEMT, even though the /spl delta/-doped device exhibits higher peak transconductance. As a result, the uniformly doped MHEMT is more suitable for communication systems that require high linearity operation.  相似文献   

13.
AlGaN-GaN heterojunction field-effect transistors (HFETs) with a field modulating plate (FP) were fabricated on an SiC substrate. The gate-drain breakdown voltage (BV/sub gd/) was significantly improved by employing an FP electrode, and the highest BV/sub gd/ of 160 V was obtained with an FP length (L/sub FP/) of 1 /spl mu/m. The maximum drain current achieved was 750 mA/mm, together with negligibly small current collapse. A 1-mm-wide FP-FET (L/sub FP/=1 /spl mu/m) biased at a drain voltage of 65 V demonstrated a continuous wave saturated output power of 10.3 W with a linear gain of 18.0 dB and a power-added efficiency of 47.3% at 2 GHz. To our knowledge, the power density of 10.3 W/mm is the highest ever achieved for any FET of the same gate size.  相似文献   

14.
We report an Al/sub 0.3/Ga/sub 0.7/N-Al/sub 0.05/Ga/sub 0.95/N-GaN composite-channel HEMT with enhanced linearity. By engineering the channel region, i.e., inserting a 6-nm-thick AlGaN layer with 5% Al composition in the channel region, a composite-channel HEMT was demonstrated. Transconductance and cutoff frequencies of a 1 /spl times/100 /spl mu/m HEMT are kept near their peak values throughout the low- and high-current operating levels, a desirable feature for linear power amplifiers. The composite-channel HEMT exhibits a peak transconductance of 150 mS/mm, a peak current gain cutoff frequency (f/sub T/) of 12 GHz and a peak power gain cutoff frequency (f/sub max/) of 30 GHz. For devices grown on sapphire substrate, maximum power density of 3.38 W/mm, power-added efficiency of 45% are obtained at 2 GHz. The output third-order intercept point (OIP3) is 33.2 dBm from two-tone measurement at 2 GHz.  相似文献   

15.
The fundamental lower limit on the turn on voltage of GaAs-based bipolar transistors is first established, then reduced with the use of a novel low energy-gap base material, Ga/sub 1-x/In/sub x/As/sub 1-y/N/sub y/. InGaP/GaInAsN DHBTs (x/spl sim/3y/spl sim/0.01) with high p-type doping levels (/spl sim/3/spl times/10/sup 19/ cm/sup -3/) and dc current gain (/spl beta//sub max//spl sim/68 at 234 /spl Omega///spl square/) are demonstrated. A reduction in the turn-on voltage over a wide range of practical base sheet resistance values (100 to 400 /spl Omega///spl square/) is established relative to both GaAs BJTs and conventional InGaP/GaAs HBTs with optimized base-emitter interfaces-over 25 mV in heavily doped, high dc current gain samples. The potential to engineer turn-on voltages comparable to Si- or InP-based bipolar devices on a GaAs platform is enabled by the use of lattice matched Ga/sub 1-x/In/sub x/As/sub 1-y/N/sub y/ alloys, which can simultaneously reduce the energy-gap and balance the lattice constant of the base layer when x/spl sim/3y.  相似文献   

16.
AlGaN/GaN HEMTs on SiC with f/sub T/ of over 120 GHz   总被引:1,自引:0,他引:1  
AlGaN/GaN high electron mobility transistors (HEMTs) grown on semi-insulating SiC substrates with a 0.12 /spl mu/m gate length have been fabricated. These 0.12-/spl mu/m gate-length devices exhibited maximum drain current density as high as 1.23 A/mm and peak extrinsic transconductance of 314 mS/mm. The threshold voltage was -5.2 V. A unity current gain cutoff frequency (f/sub T/) of 121 GHz and maximum frequency of oscillation (f/sub max/) of 162 GHz were measured on these devices. These f/sub T/ and f/sub max/ values are the highest ever reported values for GaN-based HEMTs.  相似文献   

17.
A new and interesting InGaP/Al/sub x/Ga/sub 1-x/As/GaAs composite-emitter heterojunction bipolar transistor (CEHBT) is fabricated and studied. Based on the insertion of a compositionally linear graded Al/sub x/Ga/sub 1-x/As layer, a near-continuous conduction band structure between the InGaP emitter and the GaAs base is developed. Simulation results reveal that a potential spike at the emitter/base heterointerface is completely eliminated. Experimental results show that the CEHBT exhibits good dc performances with dc current gain of 280 and greater than unity at collector current densities of J/sub C/=21kA/cm/sup 2/ and 2.70/spl times/10/sup -5/ A/cm/sup 2/, respectively. A small collector/emitter offset voltage /spl Delta/V/sub CE/ of 80 meV is also obtained. The studied CEHBT exhibits transistor action under an extremely low collector current density (2.7/spl times/10/sup -5/ A/cm/sup 2/) and useful current gains over nine decades of magnitude of collector current density. In microwave characteristics, the unity current gain cutoff frequency f/sub T/=43.2GHz and the maximum oscillation frequency f/sub max/=35.1GHz are achieved for a 3/spl times/20 /spl mu/m/sup 2/ device. Consequently, the studied device shows promise for low supply voltage and low-power circuit applications.  相似文献   

18.
GaN-based field effect transistors commonly include an Al/sub x/Ga/sub 1-x/N barrier layer for confinement of a two-dimensional electron gas (2DEG) in the barrier/GaN interface. Some of the limitations of the Al/sub x/Ga/sub 1-x/N-GaN heterostructure can be, in principle, avoided by the use of In/sub x/Al/sub 1-x/N as an alternative barrier, which adds flexibility to the engineering of the polarization-induced charges by using tensile or compressive strain through varying the value of x. Here, the implementation and electrical characterization of an In/sub x/Al/sub 1-x/-GaN high electron mobility transistor with Indium content ranging from x=0.04 to x=0.15 is described. The measured 2DEG carrier concentration in the In/sub 0.04/Al/sub 0.96/N-GaN heterostructure reach 4/spl times/10/sup 13/ cm/sup -2/ at room temperature, and Hall mobility is 480 and 750 cm/sup 2//V /spl middot/ s at 300 and 10 K, respectively. The increase of Indium content in the barrier results in a shift of the transistor threshold voltage and of the peak transconductance toward positive gate values, as well as a decrease in the drain current. This is consistent with the reduction in polarization difference between GaN and In/sub x/Al/sub 1-x/N. Devices with a gate length of 0.7 /spl mu/m exhibit f/sub t/ and f/sub max/ values of 13 and 11 GHz, respectively.  相似文献   

19.
The first room-temperature operation of In/sub 0.5/Ga/sub 0.5/As quantum dot lasers grown directly on Si substrates with a thin (/spl les/2 /spl mu/m) GaAs buffer layer is reported. The devices are characterised by J/sub th//spl sim/1500 A/cm/sup 2/, output power >50 mW, and large T/sub 0/ (244 K) and constant output slope efficiency (/spl ges/0.3 W/A) in the temperature range 5-95/spl deg/C.  相似文献   

20.
The authors have investigated the reliability performance of G-band (183 GHz) monolithic microwave integrated circuit (MMIC) amplifiers fabricated using 0.07-/spl mu/m T-gate InGaAs-InAlAs-InP HEMTs with pseudomorphic In/sub 0.75/Ga/sub 0.25/As channel on 3-in wafers. Life test was performed at two temperatures (T/sub 1/ = 200 /spl deg/C and T/sub 2/ = 215 /spl deg/C), and the amplifiers were stressed at V/sub ds/ of 1 V and I/sub ds/ of 250 mA/mm in a N/sub 2/ ambient. The activation energy is as high as 1.7 eV, achieving a projected median-time-to-failure (MTTF) /spl ap/ 2 /spl times/ 10/sup 6/ h at a junction temperature of 125 /spl deg/C. MTTF was determined by 2-temperature constant current stress using /spl Delta/G/sub mp/ = -20% as the failure criteria. The difference of reliability performance between 0.07-/spl mu/m InGaAs-InAlAs-InP HEMT MMICs with pseudomorphic In/sub 0.75/Ga/sub 0.25/As channel and 0.1-/spl mu/m InGaAs-InAlAs-InP HEMT MMICs with In/sub 0.6/Ga/sub 0.4/As channel is also discussed. The achieved high-reliability result demonstrates a robust 0.07-/spl mu/m pseudomorphic InGaAs-InAlAs-InP HEMT MMICs production technology for G-band applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号