首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new strategy for organic–inorganic hybrid networks is presented through in‐situ Type II photoinitiated polymerization of methyl methacrylate with diethanolamino‐functionalized polyhedral oligomeric silsesquioxanes (POSS‐DEA). The diethanolamino groups are simply incorporated onto POSS nanoparticles by nucleophilic ring‐opening reaction of commercially available epoxycyclohexyl POSS and diethanol amine. The photoinitiated polymerization of methyl methacrylate in the presence of benzophenone as photosensitizer and POSS‐DEA as hydrogen donor leads to poly(methyl methacrylate) (PMMA)/POSS hybrid networks under UV light irradiation. The morphology and thermal properties of hybrid networks are investigated by using Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and transmission electron microscopy. The morphology results confirm that POSS cages are homogeneously distributed in PMMA matrix at the molecular levels, whereas the thermal analyses shows that the obtained hybrid networks have higher glass transition temperatures and better thermal stabilities compared to parent PMMA homopolymer. POLYM. COMPOS., 35:1614–1620, 2014. © 2013 Society of Plastics Engineers  相似文献   

2.
The organic–inorganic hybrid nanocomposites from high‐impact polystyrene/octavinyl polyhedral oligomeric silsesquioxane (HIPS/POSS) containing various percentages of POSS were prepared by free radical polymerization and characterized by Fourier transform infrared spectroscopy (FTIR), 1H‐NMR, thermal gravity analysis (TGA), X‐ray diffraction (XRD), and transmission electron microscopy (TEM). The octavinyl POSS has formed covalent bond connected PS‐POSS hybrid with polystyrene. POSS can well disperse in the composites at the composition of 0.5 and 1 wt%. The mechanical properties and thermostability of HIPS/POSS nanocomposites were significantly improved. The tensile strength, the izod impact strength, and the elongation at break of the nanocomposite containing 1 wt% of POSS was increased, respectively, by 15.73%, 75.62%, and 72.71% in comparison with pristine HIPS. The thermal decomposition temperature of HIPS/POSS (1 wt% of POSS) was 33°C higher than that of pristine HIPS. The HIPS/POSS nanocomposites showed great potential for applications in many fields, such as electric appliance and automotive trim. POLYM. COMPOS. 37:1049–1055, 2016. © 2014 Society of Plastics Engineers  相似文献   

3.
A series of cyanate ester resin (CE) based organic–inorganic hybrids containing different contents (0, 5, 10, 15 and 20 wt%) of epoxy‐functionalized polyhedral oligomeric silsesquioxane (POSS‐Ep) were prepared by casting and curing. The hybrid resin systems were studied by the gel time test to evaluate the effect of POSS‐Ep on the curing reactivity of CE. The impact and flexural strengths of the hybrids were investigated. The micromorphological, dynamic mechanical and thermal properties of the hybrids were studied by SEM, dynamic mechanical analysis (DMA) and TGA, respectively. Results showed that POSS‐Ep prolonged the gel time of CE. CE10 containing 10 wt% POSS‐Ep displayed not only the optimum impact strength but the optimum flexural strength. SEM results revealed that the improvement of mechanical properties was attributed to the large amount of tough whirls and fiber‐like pull‐outs observed on the fracture surfaces of CE10. DMA results indicated that POSS‐CE tended to decrease E′ of the hybrids in the glassy state but to increase E′ of the hybrids in the rubbery state. TGA results showed that CE10 also possesses the best thermal stability. The initial temperature of decomposition (Ti) of CE10 is 426 °C, 44 °C higher than that of pristine CE. © 2013 Society of Chemical Industry  相似文献   

4.
A series of thermosensitive organic–inorganic hybrid gels containing nanosilica or modified nanosilica were prepared from N‐isopropylacrylamide (NIPAAm), and N,N′‐methylene‐bis‐acrylamide (NMBA) and nanosilica (AE200) or modified AE200 (mAE200); and NIPAAm, NMBA, 3‐(trimethoxysilyl) propyl methacrylate (TMSPMA) as coupling agent and AE200 or mAE200 in this study. The effect of inorganic nanosilica on the swelling behaviors and mechanical properties were investigated by adding different amount of nanosilica and modified nanosilica. Results showed that the swelling ratios of the hybrid gels decrease with increasing nanosilica content. Existence of silane coupling agent would also reduce the swelling ratios of the hybrid gels. Adding coupling agent or nanosilica would improve the gel strength. Modification of nanosilica by grafting amino‐silane via sol–gel process was carried out and the effect of addition of modified silica on gel properties was also investigated. Results showed that the hybrid gels containing modified silica would have higher swelling ratios and moduli than those containing unmodified silica. Gels containing both silane coupling agent and silica would have higher crosslinking density because the silica would be better crosslinked with coupling agent. POLYM. COMPOS., 31:1712–1721, 2010. © 2010 Society of Plastics Engineers.  相似文献   

5.
A series of poly(vinyl pyrrolidone‐co‐octavinyl polyhedral oligomeric silsesquioxanes) (PVP‐POSS) organic–inorganic hybrid nanocomposites containing different percentages of POSS were prepared via free radical polymerization and characterized by FTIR, high‐resolution 1H‐NMR, solid‐state 29Si‐NMR, GPC, DSC, and TGA. POSS contents in these nanocomposites can be effectively controlled by varying the POSS feed ratios which can be accurately quantified by FTIR curve calibration. On the basis of 29Si‐NMR spectra, average numbers of reacted vinyl groups of each octavinyl‐POSS macromer are calculated to be 5–7, which depends on POSS feed ratios. Both GPC and DSC results indicate that these nanocomposites display network structure and the degree of crosslinking increases with the increase of the POSS content. The incorporation of POSS into PVP significantly improves their thermal properties (Tg and Tdec) primarily due to crosslinking structure and dipole–dipole interaction between POSS cores and PVP carbonyl groups. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
The poly(styrene‐co‐octavinyl‐polyhedral oligomeric silsesquioxane) (PS–POSS) organic–inorganic hybrid nanocomposites containing various percent of POSS were prepared via one‐step free radical polymerization and characterized by FTIR, high‐resolution 1H NMR, 29Si NMR, GPC, DSC, and TGA technologies. The POSS contents in these nanocomposites were determined using FTIR calibration curve. The result shows that the POSS contents in nanocomposites can be tailored by varying the POSS feed ratios. On the basis of the POSS contents in the nanocomposites and the 1H NMR spectra, the number of reacted vinyl groups of each octavinyl‐POSS macromonomer were calculated to be 6–8. DSC and TGA measurements indicate that the incorporation of POSS into PS homopolymer can apparently improve the thermal properties of the polymeric materials. The dramatic Tg and Tdec increases are mainly due to the formation of star and low cross‐linking structure of the nanocomposites, where POSS cores behave as the joint points and hinder the motion and degradation of the polymeric chains. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
The various monovinyl‐functional polyhedral oligomeric silsesquioxane (POSS) monomers had been copolymerized with ethylene (E) using rac‐Et(Ind)2ZrCl2 and a modified methylaluminoxane (MMAO) cocatalyst. The unreacted POSS monomer could be removed completely by washing the copolymerization product with n‐hexane. And the copolymers were characterized with 1H NMR, TEM, DSC, TGA, and GPC to know the composition, thermal properties, molecular weight and its distribution, respectively. According to 1H NMR data, the monomer reactivity ratios of various POSS monomers were calculated by the Fineman‐Ross and Kelen‐Tudos methods. Thermogravimetric analysis of E/POSS copolymers exhibited an improved thermal stability with a higher degradation temperature and char yields, demonstrating that the inclusion of inorganic POSS nanoparticles made the organic polymer matrix more thermally robust. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
With the aim of selecting a precursor of a polyhedral oligomeric silsesquioxane (POSS) reacted with aromatic diamines for its incorporation into an epoxy network, to generate an organic–inorganic hybrid material containing POSS, a polyhedral oligomeric silsesquioxane (glycidylisobutyl–POSS) was reacted with the diamines 4,4′‐methylenebis(2,6‐diethylaniline) (MDEA), 4,4′‐diaminediphenylmethane (DDM), and 4,4′‐(1,3‐phenylenediisopropylidene)bisaniline (BSA), at 160°C and different times, in a proportion rich in amines. The distribution of species in the reaction was followed by gel permeation chromatography (GPC). From the experimental data obtained the selected precursor was POSS/BSA reacted at 160°C for 20 or 30 min, to ensure that all the POSS was reacted, that there was a maximum of the monosubstituted amines, and that there was no degradation. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1576–1583, 2004  相似文献   

9.
A series of organic‐inorganic hybrid thermosensitive gels with three different structures and different contents of tetraethoxysilane (TEOS) were prepared from N‐isopropylacrylamide (NIPAAm), and N,N′‐methylene‐bis‐acrylamide (NMBA) and TEOS [N‐IPN]; NIPAAm, 3‐(trimethoxysilyl) propyl methacrylate (TMSPMA) as coupling agent and TEOS [NT‐IPN]; and NIPAAm, TMSPMA and TEOS [NT‐semi‐IPN] by emulsion polymerization and sol‐gel reaction in this study. The effect of TEOS content on the swelling behavior, mechanical properties, and morphologies of the present gels was investigated. Results showed that the properties of the gels would be affected by the gel networks such as IPN or semi‐IPN, existence of TMSPMA as the bridge chain between networks, and content of TEOS. The NT‐semi‐IPN gel had higher swelling ratio because poly (NIPAAm) moiety in the semi‐IPN gels was not restricted by NMBA network. However, the IPN gels such as N‐IPN and NT‐IPN had good mechanical properties and lower swelling ratio, but had bad thermosensitivity due to the addition of coupling agent, TMSPMA, into the gel system that resulted in denser link between organic and inorganic components. Increasing TEOS content would also reduce the thermosensitivity of the hybrid gels. The morphology showed that IPN gels had partial aggregation (siloxane domain) and showed some denser phases. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

10.
A new class of organic‐inorganic hybrid polymers with well‐defined structure was prepared by reacting diepoxyhexavinyl polyhedral oligomeric silsesquioxanes (DehvPOSS) with diamines of different chain lengths. The structures and properties of these hybrid polymers were well characterized by FTIR, 29Si‐NMR, GC‐MS, and TGA. A modeling characterization was employed to help identify the structures of organic tethers linked between the POSS cages. The results indicated that at the stoichiometric ratio of DehvPOSS to diamine, well‐defined organic–inorganic hybrid polymers with controlled variation of the organic tether architecture can be made, and each organic tether connected four POSS cages. Thermal stability (Tdec) increased with an increase in the tether length of the diamine molecules, and the highest Tdec was obtained with butanediamine (rather than propanediamine or ethanediamine) as the organic tether. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3730–3735, 2006  相似文献   

11.
A series of organic–inorganic hybrid thermosensitive gels with three different structures were prepared from N‐isopropylacrylamide (NIPAAm), and N, N′‐methylenebisacrylamide (NMBA) and tetraethoxysilane (TEOS) [N‐IPN]; NIPAAm, 3‐(trimethoxysilyl) propyl methacrylate (TMSPMA) as coupling agent and TEOS [NT‐IPN]; and NIPAAm, TMSPMA, and TEOS [NT‐semi‐IPN] by emulsion polymerization and sol–gel reaction in this study. The effect of different gel structures and coupling agent on the swelling behavior, mechanical properties, and morphologies of the present gels was investigated. Results showed that the properties of the gels would be affected by the gel networks such as IPN or semi‐IPN and with or without existence of TMSPMA as the bridge chain between networks. The NT‐semi‐IPN gel had higher swelling ratio and faster diffusion rate because poly(NIPAAm) moiety in the semi‐IPN gels was not restricted by NMBA network. However, the IPN gels such as N‐IPN and NT‐IPN had good mechanical properties and lower swelling ratio, but had a poor thermosensitivity due to the addition of coupling agent, TMSPMA, into the gel system that resulted in denser link between organic and inorganic components. The morphology showed that IPN gels had partial aggregation (siloxane domain) and showed some denser phases. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
A catalyst‐free, one‐pot method of preparing novel polyhedral oligomeric silsesquioxanes (POSS) containing organic–inorganic hybrid mesoporous nanocomposite at room temperature is reported. Nitrogen sorption analyses gave us a specific surface area of 500.931 m2/g with a pore volume of 0.563 mL/g and an average pore size of 3.84 nm. The combined results of Fourier transform infrared and solid 29Si‐NMR spectroscopy clearly show that the POSS building block was successfully woven into the porous nanostructure without obvious alteration of the characteristics and structure. The material showed good thermal stability. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
The flame retardancy and thermal stability of polyhedral oligomeric silsesquioxane (POSS) nanocomposites are reviewed. Results are summarized and compared on the basis of structure–property relationships. Because of the variability of groups attached on POSS, they exhibit different performance in polymer nanocomposites: metal‐containing POSS show good catalytic charring ability; vinyl‐containing and phenyl‐containing POSS promote the strength of char. Improvements in the cone calorimeter (such as reduced peak heat release rate) are advantages of POSS as preceramics for fire retardancy compared with traditional flame retardants, and it will pave the way to the design of inorganic–organic hybrid polymer nanocomposites with enhanced flame retardancy and thermal stability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
廖明义  范诚 《弹性体》2011,21(1):75-81
多面体低聚倍半硅氧烷(POSS,Polyhedral Oligomeric Silsesquioxane)作为一种特殊的有机/无机杂化纳米粒子备受关注。本文综述了国内外通过离子型反应机理制备聚合物/POSS纳米杂化材料的一些进展,着重介绍反应机理、特点,并对这一领域的前景进行了展望。  相似文献   

15.
A novel organic–inorganic hybrid of epoxycyclohexyl polyhedral oligomeric silsesquioxane (e‐POSS)–grafted carboxylic methoxypolyethylene glycols (mPEG‐COOH), that is, a POSS‐mPEG graftomer, was synthesized. The grafting reaction of e‐POSS and mPEG‐COOH was characterized by Fourier transform infrared (FTIR) and 1H‐NMR spectroscopy. Then the graftomer was used to develop new composite solid polymer electrolyte (SPE) films with a carboxylated nitrile rubber–epoxidized natural rubber (XNBR‐ENR) self‐crosslinked blend system as a dual‐phase polymer matrix. The self‐crosslinked reaction of the XNBR‐ENR matrix was investigated using ATR‐FTIR. The morphology of the SPE films and the distribution of lithium salt were investigated using field emission scanning electron microscopy and X‐ray diffraction, and the result illustrated that the addition of POSS‐mPEG could promote and accelerate the dissociation of LiClO4. The best effect within the range of this study was achieved when 25 phr POSS‐mPEG was involved. The differential scanning calorimetry analysis proved that the glass‐transition temperature of the composite SPE films was reduced with the increase of POSS‐mPEG. The ionic conductivity of the composite SPE films was investigated by electrochemical impedance spectroscopy. The highest ionic conductivity in this study of 2.57 × 10?5 S cm?1 was obtained with 25 phr POSS‐mPEG loading. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44460.  相似文献   

16.
The poly(acetoxystyrene-co-isobutyl styryl polyhedral oligomeric silsesquioxanes)s (PAS-POSS) were synthesized by free radical polymerization and characterized by FTIR, high resolution NMR, FTIR, GPC, and DSC. The results show that the POSS content can be controlled by varying the POSS feed ratios. The interactions between organic components and inorganic POSS core, and the effects of inorganic POSS core on the properties of the resulting hybrids were investigated by high resolution solid state 13C NMR, 29Si NMR and FTIR spectra. The results provide detailed understandings of the effects of POSS moiety on properties of hybrid polymers.  相似文献   

17.
New hybrid poly(hydroxyethyl methacrylate‐co‐methyl methacrylate)‐g‐polyhedral oligosilsesquioxane [poly(HEMA‐co‐MMA)‐g‐POSS] nanocomposites were synthesized by the combination of reversible addition fragmentation chain transfer (RAFT) polymerization and click chemistry using a grafting to protocol. Initially, the random copolymer poly(HEMA‐co‐MMA) was prepared by RAFT polymerization of HEMA and MMA. Alkynyl side groups were introduced onto the polymeric backbones by esterification reaction between 4‐pentynoic acid and the hydroxyl groups on poly(HEMA‐co‐MMA). Azide‐substituted POSS (POSS? N3) was prepared by the reaction of chloropropyl‐heptaisobutyl‐substituted POSS with NaN3. The click reaction of poly(HEMA‐co‐MMA)‐alkyne and POSS? N3 using CuBr/PMDEATA as a catalyst afforded poly(HEMA‐co‐MMA)‐g‐POSS. The structure of the organic/inorganic hybrid material was investigated by Fourier transformed infrared, 1H‐NMR, and 29Si‐NMR. The elemental mapping analysis of the hybrid using X‐ray photoelectron spectroscopy and EDX also suggest the formation of poly(HEMA‐co‐MMA)‐anchored POSS nanocomposites. The XRD spectrum of the nanocomposites gives evidence that the incorporation of POSS moiety leads to a hybrid physical structure. The morphological feature of the hybrid nanocomposites as captured by field emission scanning electron microscopy and transmission electron microscopic analyses indicate that a thick layer of polymer brushes was immobilized on the POSS cubic nanostructures. The gel permeation chromatography analysis of poly(HEMA‐co‐MMA) and poly(HEMA‐co‐MMA)‐g‐POSS further suggests the preparation of nanocomposites by the combination of RAFT and click chemistry. The thermogravimetric analysis revealed that the thermal property of the poly(HEMA‐co‐MMA) copolymer was significantly improved by the inclusion of POSS in the copolymer matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Nanocomposites of eugenol‐based polybenzoxazines/amine containing polyhedral oligomeric silsesquioxane (POSS) have been prepared through copolymerization of allyl‐containing benzoxazine compounds and amine containing POSS. Their structures, curing behaviour, and thermomechanical properties were characterized by Fourier transform infrared, 1H‐NMR, 13C‐NMR, X‐ray diffraction, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). The nanoscale dispersion of POSS cores in the nanocomposites was verified by scanning electron microscopy, atomic force microscopy, and transmission electron microscopy studies. The results from DMA and TGA show that the thermal stability, crosslink density and flame retardance of the nanocomposites increased when small amounts of POSS cores (5 wt%) were incorporated into the system. Further the POSS incorporation reduces the dielectric constant of the benzoxazines to about 1.32. Hence, the prepared nanocomposites could be used as ultra‐low‐k materials for advanced microelectronics. POLYM. COMPOS., 36:1973–1982, 2015. © 2014 Society of Plastics Engineer  相似文献   

19.
Organic/inorganic hybrid materials were prepared by synthesizing from titanium tetraisopropoxide (TTIP), diethanolamine (DEOA), and water. Formulating the materials with thermosetting polymers, the composites were designed for refractive optical contacts with heat lamination of a film having >50 μm thickness. Inherent difficulties of TiO2 and sol‐gel reaction of TTIP, i.e. photocatalytic properties and prompt sol‐gel reaction to form large TiO2 particle, were avoided by stabilizing Ti with use of DEOA. The reactivity of the sol‐gel reaction and formation of TiO2 crystal structure were suppressed by DEOA. However, suppression of the photocatalytic properties was not enough and needed a use of anti‐oxidant agent, 2,6‐di‐t‐butyl‐p‐cresol (BHT). The titanium‐based organic/inorganic hybrid materials and its epoxy composites were transparent in visible wavelength region and gave in the range of 1.66 to 1.73 of refractive indices depending on stoichometric parameters of TTIP, water, and DEOA for the hybrid materials. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

20.
To decrease the thermal conductivity of polytriazole‐based fiber reinforced composites, an organic–inorganic POSS/polytriazole hybrid resin was obtained. The influences of various proportions of POSS on thermal conductivity and the thermal properties of hybrid materials were emphatically investigated. The results show that POSS incorporation resulted in not only decreased thermal conductivity but also increased Tg and thermal decomposition temperature. The enhancement was ascribed to the nanoscale effect of POSS structure and the fact that the POSS framework has a high heat resistance property. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41967.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号