首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The double T‐junction microchannel is a classical microstructured chemical device used to generate gas/liquid/liquid three‐phase microflows. An experimental study that focused on the three‐phase flow phenomena and bubble/droplet generation rules in a double T‐junction microchannel was introduced. Based on the published knowledge of gas/liquid and liquid/liquid two‐phase microflows, new flow patterns were carefully defined: bubble cutting flow, spontaneous break‐up and bubble cutting coupling flow, and bubble/droplet alternate break‐up flow. According to the classical correlations of bubble and droplet volumes and their generation frequency ratio, the operating criteria for creating different three‐phase flow patterns were established and a model for the dimensionless average bubble and droplet volumes in the three‐phase microflows was developed. These various three‐phase microflows have great application potential in material science and flow chemistry synthesis. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1722–1734, 2015  相似文献   

2.
This paper investigates oil–water two‐phase flows in microchannels of 793 and 667 µm hydraulic diameters made of quartz and glass, respectively. By injecting one fluid at a constant flow rate and the second at variable flow rate, different flow patterns were identified and mapped and the corresponding two‐phase pressure drops were measured. Measurements of the pressure drops were interpreted using the homogeneous and Lockhart–Martinelli models developed for two‐phase flows in pipes. The results show similarity to both liquid–liquid flow in pipes and to gas–liquid flow in microchannels. We find a strong dependence of pressure drop on flow rates, microchannel material, and the first fluid injected into the microchannel.  相似文献   

3.
4.
Study of liquid‐liquid flow patterns in reduced dimensions is relevant under the current trends to miniaturize process equipment. The phase distribution results from interplay of surface (dominant in microchannels) and gravity forces (dominant in larger dimensions). The proposed analysis, based on minimization of total system energy comprising of kinetic, surface, and potential energy, unravels the influence of wetting properties and predicts the range of existence of annular and plug flow as well as the onset of stratification with increasing conduit dimension. Unlike existing models marking abrupt transitions, the proposed methodology can predict zones of transition where interfacial distributions gradually evolve with change of operating conditions—the predictions agreeing closely to experimental and literature data. The analysis illustrates the coupled effect of diameter, contact angle, and inlet composition on flow distribution and defines the transition from macrodomain to microdomain (millichannels) in terms of Bond number as 0.1 < Bo < 10. © 2015 American Institute of Chemical Engineers AIChE J, 62: 287–294, 2016  相似文献   

5.
To solve the problems of the traditional packings, such as high pressure drop, mal‐distribution and short liquid residence time, a helical flow structured packings was proposed. Two different flow patterns, liquid‐bridge flow and liquid‐drop flow were identified when the width of the channel of the helical string was adjusted. Moreover, the characteristics of the helical liquid‐bridge flow including maximum liquid loading, mean thickness of liquid film, mean residence time and effective specific surface area, were examined. And the separation efficiency was studied by the lab‐scale distillation column. In comparison, the effective specific surface area of the helical flow type packings is almost as large as the traditional B1‐350Y structured packings, but with thinner liquid film, longer liquid residence time and finally higher separation efficiency. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3360–3368, 2018  相似文献   

6.
The miscible liquid‐liquid two phases based on Taylor flow in microchannels was investigated by high‐speed imaging techniques and Villermaux/Dushman reaction. The mixing based on Taylor flow was much better compared with that without introducing gas in microchannels, even the ideal micromixing performance could be obtained under optimized superficial gas and liquid velocities. In the mixing process based on Taylor flow, the superficial gas and liquid velocities affected the lengths and the velocities of Taylor bubble and liquid slug, and finally the micromixing performance. The formation process of Taylor flow in the inlets, the initial uniform distribution of reactants and the internal circulations in the liquid slug, and the thin liquid films all improved the mixing performance. Furthermore, a modified Peclet number that represented the relative importance of diffusion and convection in the mixing process was proposed for explaining and anticipating micromixing efficiency. © 2011 American Institute of Chemical Engineers AIChE J, 58: 1660–1670, 2012  相似文献   

7.
The effect of tube diameter on two‐phase flow patterns was investigated in circular tubes with inner diameters of 0.6, 1.2, 1.7, 2.6, and 3.4 mm using air and water. The gas and liquid superficial velocity ranges were 0.01–50 and 0.01–3 m/s, respectively. The gas and liquid flow rates were measured and the two‐phase flow pattern images were recorded using high‐speed CMOS camera. The flow patterns observed were dispersed bubbly, bubbly, slug, slug‐annular, wavy‐annular, stratified, and annular flows. These flow patterns were not observed in all the test diameters, but were found to be unique to particular tube diameters, confirming the effect of tube diameter on the flow pattern. The data obtained were compared to existing experimental data and flow regime transition maps which show generally reasonable overall agreement at the larger diameters, but significant differences were observed with the smaller diameter tubes.  相似文献   

8.
9.
Hydrodynamics of gas–liquid two‐phase flow in micropacked beds are studied with a new experimental setup. The pressure drop, residence time distribution, and liquid holdup are measured with gas and liquid flow rates varying from 4 to 14 sccm and 0.1 to 1 mL/min, respectively. Key parameters are identified to control the experimentally observed hydrodynamics, including transient start‐up procedure, gas and liquid superficial velocities, particle and packed bed diameters, and physical properties of the liquids. Contrary to conventional large packed beds, our results demonstrate that in these microsystems, capillary forces have a large effect on pressure drop and liquid holdup, while gravity can be neglected. A mathematical model describes the hydrodynamics in the micropacked beds by considering the contribution of capillary forces, and its predictions are in good agreement with experimental data. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4694–4704, 2017  相似文献   

10.
Gas–aqueous liquid–oil three‐phase flow was generated in a microchannel with a double T‐junction. Under the squeezing of the dispersed aqueous phase at the second T‐junction (T2), the splitting of bubbles generated from the first T‐junction (T1) was investigated. During the bubble splitting process, the upstream gas–oil two‐phase flow and the aqueous phase flow at T2 fluctuate in opposite phases, resulting in either independent or synchronous relationship between the instantaneous downstream and upstream bubble velocities depending on the operating conditions. Compared with two‐phase flow, the modified capillary number and the ratio of the upstream velocity to the aqueous phase velocity were introduced to predict the bubble breakup time. The critical bubble breakup length and size laws of daughter bubbles/slugs were thereby proposed. These results provide an important guideline for designing microchannel structures for a precise manipulation of gas–liquid–liquid three‐phase flow which finds potential applications among others in chemical synthesis. © 2017 American Institute of Chemical Engineers AIChE J, 63: 376–388, 2018  相似文献   

11.
A new two‐phase roll wave model is compared with data from high pressure two‐phase stratified pipe flow experiments. Results from 754 experiments, including mean wave speed, wave height, pressure gradient, holdup and wave length, are compared with theoretical results. The model was able to predict these physical quantities with good accuracy without introducing any new empirically determined quantities to the two‐fluid model equations. This was possible by finding the unique theoretical limit for nonlinear roll amplitude and applying a new approach for determining the friction factor at the gas‐liquid interface. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

12.
New experimental results on pressure loss for the single and two‐phase gas‐liquid flow with non‐Newtonian liquids in helical coils are reported. For a constant value of the curvature ratio, the value of the helix angle of the coils is varied from 2.56° to 9.37°. For single phase flow, the effect of helix angle on pressure loss is found to be negligible in laminar flow regime but pressure loss increases with the increasing value of helix angle in turbulent flow conditions. On the other hand, for the two‐phase flow, the well‐known Lockhart‐Martinelli method correlates the present results for all values of helix angle (2.56‐9.37°) satisfactorily under turbulent/laminar and turbulent/turbulent conditions over the following ranges of variables as: 0.57 ≤ n′ ≤ 1; Re′ < 4000; Rel < 4000; Reg < 8000; 8 ≤ x ≤ 1000 and 0.2 ≤ De′ ≤ 1000.  相似文献   

13.
14.
The stability of jets in elongational flow is exploited to obtain thin threads before breakup. Fine drops can be generated in suitable geometries with comparably large ducts. The examination deals with the stability of liquid threads simultaneously extended with the continuous phase in convergent flow. Breakup limits and regimes are discussed.  相似文献   

15.
16.
An experimental study is conducted using a 0.152‐m ID facility to investigate the wave characteristics of two‐phase stratified wavy flow in horizontal pipelines. The experiments are conducted under low liquid loading condition, which is very commonly observed in wet gas pipelines. The experiments are conducted with water as the liquid phase, and repeated with 51 wt % of monoethylene glycol (MEG) in the aqueous phase to analyze the effects of MEG presence on wave characteristics. The experimental range of this study covers superficial gas velocity, vSg, values of 9–23 m/s and superficial liquid velocity, vSL, values of 0.01–0.02 m/s. Similar test matrices are completed for the cases with and without MEG in the aqueous phase. A conductivity probe system is used to measure the wave characteristics at the liquid–gas interface. These characteristics include the wave celerity, frequency, amplitude, length, and liquid film thickness. The experimental oil–air wave characteristics data of Gawas et al. (Int J Multiphase Flow. 2014;63:93–104) is also used for comparison purposes. The trends in the resulting wave characteristics with respect to input parameters are investigated, for oil, water, or MEG–water mixture as the liquid phase. Common predictive methods for interfacial wave celerity, including shallow water theory, Watson (Proceedings of the 4th International Conference in Multi‐Phase Flows, Nice, France. 1989:495–512), Paras et al. (Int J Multiphase Flow. 1994;20(5):939–956), Al‐Sarkhi et al. (AIChE J. 2012;58(4):1018–1029), and Gawas et al. (Int J Multiphase Flow. 2014;63:93–104) are evaluated in comparison with the experimental data. The results of the wave frequency correlation of Al‐Sarkhi et al. (AIChE J. 2012;58(4):1018–1029) are also compared with the experimental wave frequency data. Lastly, a correlation is developed to predict the relative wave amplitude, as a function of superficial gas Weber number and liquid velocity number. Most of the commonly used two‐phase stratified flow models are developed with the assumption of steady‐state conditions, and neglect the transient wave effects. This study provides valuable experimental results on wave characteristics of stratified wavy flow for different types of liquid phase. Moreover, a comprehensive analysis of the parameters affecting the wave characteristics of stratified wavy flow is presented. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3177–3186, 2017  相似文献   

17.
Using air and water as the working fluids, phase separation phenomena for stratified and plug flows at inlet were investigated experimentally, at a simple T‐junction and specifically designed multitube T‐junction separators with two or three layers. The results show that for these two flow patterns the separation efficiency of the two phases for any multitube T‐junction separator is much higher than that of the simple T‐junction. Increasing the number of connecting tubes in the multitube T‐junction separator can increase the separation efficiency. Generally, for stratified flow, complete separation of the two phases can be achieved by the two‐layer multitube T‐junction separator with five or more connecting tubes and by the three‐layer separator; increasing the gas flow rate, the liquid flow rate, or the mixture velocity under plug flow is detrimental to phase separation with a drop in peak separation efficiency. © 2016 American Institute of Chemical Engineers AIChE J, 63: 2285–2292, 2017  相似文献   

18.
19.
A low‐cost and simple magnetic particle tracer method was adapted to characterize the hydrodynamic behavior of an internal‐ and an external‐loop airlift reactor (ALR). The residence time distribution of three magnetic particles differing in diameter (5.5, 11.0 and 21.2 mm) and with a density very close to that of water was measured in individual reactor sections. The measured data were analyzed and used to determine the velocity of the liquid phase. Validation of the experimental results for liquid velocity was done by means of the data obtained by an independent reference method. Furthermore, analysis of the differences found in the settling velocity of the particle in single‐liquid and gas‐liquid phases was carried out, using a simplified 3D momentum transfer model. The model considering particle‐bubble interaction forces resulting from changes in the liquid velocity field due to bubble motion was able to predict satisfactorily the increase in the particle settling velocity in the homogeneous bubbly regime. The effective drag coefficient in two‐phase flow was found to be directly dependent on particle Reynolds number to the power of ? 2 but independent of gas flow‐rate for all particle diameters studied. Based on the experimental and theoretical investigations, the valid exact formulation of the effective buoyancy force necessary for the calculation of the correct particle settling velocity in two‐phase flow was done. In addition, recommendations concerning the use of flow‐following particles in internal‐loop ALRs for liquid velocity measurements are presented. Copyright © 2006 Society of Chemical Industry  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号