首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Herein, new derivatives of α,β-unsaturated ketones based on oleanolic acid ( 4 a – i ) were designed, synthesized, characterized, and tested against human prostate cancer (PC3). According to the in vitro cytotoxic study, title compounds ( 4 a – i ) showed significantly lower toxicity toward healthy cells (HUVEC) in comparison with the reference drug doxorubicin. The compounds with the lowest IC50 values on PC3 cell lines were 4 b (7.785 μM), 4 c (8.869 μM), and 4 e (8.765 μM). The results of the ADME calculations showed that the drug-likeness parameters were within the defined ranges according to Lipinski's and Jorgensen's rules. For the most potent compounds 4 b , 4 c , and 4 e , a molecular docking analysis using the induced fit docking (IFD) protocol was performed against three protein targets (PARP, PI3K, and mTOR). Based on the IFD scores, compound 4 b had the highest calculated affinity for PARP1, while compound 4 c had higher affinities for mTOR and PI3K. The MM-GBSA calculations showed that the most potent compounds had high binding affinities and formed stable complexes with the protein targets. Finally, a 50 ns molecular dynamics simulation was performed to study the behavior of protein target complexes under in silico physiological conditions.  相似文献   

2.
Uterine proprotein convertase (PC) 6 plays a critical role in embryo implantation and is pivotal for pregnancy establishment. Inhibition of PC6 may provide a novel approach for the development of non-hormonal and female-controlled contraceptives. We investigated a class of five synthetic non-peptidic small molecule compounds that were previously reported as potent inhibitors of furin, another PC member. We examined (i) the potency of these compounds in inhibiting PC6 activity in vitro; (ii) their binding modes in the PC6 active site in silico; (iii) their efficacy in inhibiting PC6-dependent cellular processes essential for embryo implantation using human cell-based models. All five compounds showed potent inhibition of PC6 activity in vitro, and in silico docking demonstrated that these inhibitors could adopt a similar binding mode in the PC6 active site. However, when these compounds were tested for their inhibition of decidualization of primary human endometrial stromal cells, a PC6-dependent cellular process critical for embryo implantation, only one (compound 1o) showed potent inhibition. The lack of activity in the cell-based assay may reflect the inability of the compounds to penetrate the cell membrane. Because compound''s lipophilicity is linked to cell penetration, a measurement of lipophilicity (logP) was calculated for each compound. Compound 1o is unique as it appears the most lipophilic among the five compounds. Compound 1o also inhibited another crucial PC6-dependent process, the attachment of human trophoblast spheroids to endometrial epithelial cells (a model for human embryo attachment). We thus identified compound 1o as a potent small molecule PC6 inhibitor with pharmaceutical potential to inhibit embryo implantation. Our findings also highlight that human cell-based functional models are vital to complement the biochemical and in silico analyses in the selection of promising drug candidates. Further investigations for compound 1o are warranted in animal models to test its utility as an implantation-inhibiting contraceptive drug.  相似文献   

3.
The transmission of mosquito-borne Chikungunya virus (CHIKV) has large epidemics worldwide. Till date, there are neither anti-viral drugs nor vaccines available for the treatment of Chikungunya. Accumulated evidences suggest that some natural compounds i.e., Epigallocatechin gallate, Harringtonine, Apigenin, Chrysin, Silybin, etc. have the capability to inhibit CHIKV replication in vitro. Natural compounds are known to possess less or no side effects. Therefore, natural compound in its purified or crude extracts form could be the preeminent and safe mode of therapies for Chikungunya. Wet lab screening and identification of natural compounds against Chikungunya targets is a time consuming and expensive exercise. In the present study, we used in silico techniques like receptor-ligand docking, Molecular dynamic (MD), Three Dimensional Quantitative Structure Activity Relation (3D-QSAR) and ADME properties to screen out potential compounds. Aim of the study is to identify potential lead/s from natural sources using in silico techniques that can be developed as a drug like molecule against Chikungunya infection and replication. Three softwares were used for molecular docking studies. Potential ligands selected by docking studies were subsequently subjected 3D-QSAR studies to predict biological activity. Based on docking scores and pIC50 value, potential anti-Chikungunya compounds were identified. Best docked receptor-ligands were also subjected to MD for more accurate estimation. Lipinski’s rule and ADME studies of the identified compounds were also studied to assess their drug likeness properties. Results of in silico findings, led to identification of few best fit compounds of natural origin against targets of Chikungunya virus which may lead to discovery of new drugs for Chikungunya.

Communicated by Ramaswamy H. Sarma  相似文献   


4.
Piperazine and pyrrolidine derivatives were synthesised and evaluated for their capacity to inhibit the growth of Plasmodium falciparum chloroquine-resistant (FCR-3) strain in culture. The combined presence of a hydroxyl group, a propane chain and a fluor were shown to be crucial for the antiplasmodial activity. Five compounds of the aryl-alcohol series inhibited 50% of parasite growth at doses ?10 μM. The most active compound 1-(4-fluoronaphthyl)-3-[4-(4-nitro-2-trifluoromethylphenyl)piperazin-1-yl] propan-1-ol was almost 20–40 times more active on P. falciparum (IC50: 0.5 μM) than on tumorogenic and non-tumorogenic cells. In vivo it has a very weak effect; inhibiting 35% of parasite growth only, at 10 mg/kg/day against Plasmodium berghei infected mice without any impact on survival time. In silico molecular docking study and molecular electrostatic potential calculation revealed that this compound bound to the active site of Plasmodium plasmepsin II enzyme.  相似文献   

5.
Lysine specific demethylase 1 (LSD1) plays a vital role in epigenetic regulation of gene activation and repression in several human cancers and is recognized as a promising antitumor therapeutic target. In this paper, a series of 4-(4-benzyloxy)phenoxypiperidines were synthesized and evaluated. Among the tested compounds, compound 10d exhibited the potent and reversible inhibitory activity against LSD1 in vitro (IC50 = 4 μM). Molecular docking was conducted to predict its binding mode. Furthermore, 10d displayed it could inhibit migration of HCT-116 colon cancer cells and A549 lung cancer cells. Taken together, 10d deserves further investigation as a hit-to-lead for the treatment of LSD1 associated tumors.  相似文献   

6.
In this study, new chiral thiourea and 1,3-thiazolidine-4,5-dione derivatives were synthesized, it was aimed to evaluate the various biological activities and molecular docking of these compounds. Firstly, the new thioureas ( 1 – 16 ) were obtained by reacting 1-naphthylisothiocyanate with different chiral amines. Then, the chiral thioureas were cyclized with oxalyl chloride to obtain 1,3-thiazolidine-4,5-dione derivatives ( 17 – 32 ). All compounds were evaluated with several in vitro antioxidant and enzyme inhibition activities. Compound 30 was the most active compound against AChE, with a value of IC50=8.09±0.58 μM. On the other hand, all compounds were tested in silico absorption, distribution, metabolism, and excretion (ADME) assays to better understand their bioavailability. These physicochemical properties, pharmacokinetics, and drug-likeness of all compounds were calculated using SwissADME. Furthermore, according to molecular docking analyses compound 30 exhibited significant binding affinities for all enzymes. Based on our overall observations, compound 30 could be recommended as a potential lead for the therapuetic of Alzheimer's.  相似文献   

7.
Twenty five newly synthesized coumarin scaffold based derivatives were assayed for their in vitro anticancer activity against MCF-7 breast and PC-3 prostate cancer cell lines and were further assessed for their in vitro VEGFR-2 kinase inhibitory activity. The in vitro cytotoxic studies revealed that most of the synthesized compounds possessed very promising cytotoxicity against MCF-7, particularly; compounds 4a (IC50 = 1.24 µM) and 3d (IC50 = 1.65 µM) exhibited exceptional activities superior to the positive control staurosporine (IC50 = 8.81 µM). Similarly, the majority of the compounds exhibited higher antiproliferative activities compared to the reference standard with IC50 values ranging from 2.07 to 8.68 µM. The two cytotoxic derivatives 4a and 3d were selected to evaluate their inhibitory potencies against VEGFR-2 kinase. Remarkably, compound 4a, exhibited significant IC50 of 0.36 µM comparable to staurosporine (IC50; 0.33 µM). Moreover, it was capable of inducing preG1 apoptosis, cell growth arrest at G2/M phase and activating caspase-9. On the other hand, insignificant cytotoxic activity was observed for all compounds towards PC-3 cell line. Molecular docking study was carried out for the most active anti-VEGFR-2 derivative 4a, which demonstrated the ability of the tested compound to interact with the key amino acids in the target VEGFR-2 kinase binding site. Additionally, the ADME parameters and physicochemical properties of compound 4a were examined in silico.  相似文献   

8.
Two series of moscatilin derivatives were designed, synthesized and evaluated as anti-tumor and anti-angiogenesis agents. Most of these compounds showed moderate-to-obvious cytotoxicity against five cancer cell lines (A549, HepG2, MDA-MB-231, MKN-45, HCT116). Among these cell lines, compounds had obvious effects on HCT116. Especially for 8Ae, the IC50 was low to 0.25 μM. 8Ae can inhibit the viability and induce the apoptosis of HCT116 cells but exhibit no cytotoxic activity in noncancerous NCM460 colon cells. 8Ae can also arrest the G2/M cell cycle in HCT116 cells by inhibiting the α-tubulin expression. Zebrafish bioassay-guided screen showed the 22 moscatilin derivatives had potent anti-angiogenic activities and compound 8Ae had better activities than positive compound. Molecular docking indicated 8Ae interacted with tubulin at the affinity of −7.2 Kcal/mol. In conclusion, compound 8Ae was a potential antitumor and anti-angiogenesis candidate for further development.  相似文献   

9.
A series of new deferasirox derivatives were synthesized through the reaction of monosubstituted hydrazides with 2‐(2‐hydroxyphenyl)‐4H‐benzo[e][1,3]oxazin‐4‐one. For the first time, deferasirox and some of its derivatives were evaluated for their in vitro inhibitory activity against Jack bean urease. The potencies of the members of this class of compounds are higher than that of acetohydroxamic acid. Two compounds, bearing tetrazole and hydrazine derivatives (bioisoester of carboxylate group), represented the most potent urease inhibitory activity with IC50 values of 1.268 and 3.254 μm , respectively. In silico docking studies were performed to delineate possible binding modes of the compounds with the enzyme, urease. Docking analysis suggests that the synthesized compounds were anchored well in the catalytic site and extending to the entrance of binding pocket and thus restrict the mobility of the flap by interacting with its crucial amino acid residues, CME592 and His593. The overall results of urease inhibition have shown that these target compounds can be further optimized and developed as a lead skeleton for the discovery of novel urease inhibitors  相似文献   

10.
The InhA inhibitors play key role in mycolic acid synthesis by preventing the fatty acid biosynthesis pathway. In this present article, Pharmacophore modelling and molecular docking study followed by in silico virtual screening could be considered as effective strategy to identify newer enoyl-ACP reductase inhibitors. Pyrrolidine carboxamide derivatives were opted to generate pharmacophore models using HypoGen algorithm in Discovery studio 2.1. Further it was employed to screen Zinc and Minimaybridge databases to identify and design newer potent hit molecules. The retrieved newer hits were further evaluated for their drug likeliness and docked against enoyl acyl carrier protein reductase. Here, novel pyrazolo[1,5-a]pyrimidine analogues were designed and synthesized with good yields. Structural elucidation of synthesized final molecules was perform through IR, MASS, 1H-NMR, 13C-NMR spectroscopy and further tested for its in vitro anti-tubercular activity against H37Rv strain using Microplate Alamar blue assay (MABA) method. Most of the synthesized compounds displayed strong anti-tubercular activities. Further, these potent compounds were gauged for MDR-TB, XDR-TB and cytotoxic study.  相似文献   

11.
A series of novel substituted pyrazole-fused oleanolic acid derivative were synthesized and evaluated as selective α-glucosidase inhibitors. Among these analogs, compounds 4a – 4f exhibited more potent inhibitory activities compared with their methyl ester derivatives, and standard drugs acarbose and miglitol as well. Besides, all these analogs exhibited good selectivity towards α-glucosidase over α-amylase. Analog 4d showed potent inhibitory activity against α-glucosidase (IC50=2.64±0.13 μM), and greater selectivity towards α-glucosidase than α-amylase by ∼33-fold. Inhibition kinetics showed that compound 4d was a non-competitive α-glucosidase inhibitor, which was consistent with the result of its simulation molecular docking. Moreover, the in vitro cytotoxicity of compounds 4a – 4f towards hepatic LO2 and HepG2 cells was tested.  相似文献   

12.
In spite of tremendous efforts exerted in the management of COVID-19, the absence of specific treatments and the prevalence of delayed and long-term complications termed post-COVID syndrome still urged all concerned researchers to develop a potent inhibitor of SARS-Cov-2. The hydromethanolic extracts of different parts of E. mauritanica were in vitro screened for anti-SARS-Cov-2 activity. Then, using an integrated strategy of LC/MS/MS, molecular networking and NMR, the chemical profile of the active extract was determined. To determine the optimum target for these compounds, docking experiments of the active extract's identified compounds were conducted at several viral targets. The leaves extract showed the best inhibitory effect with IC50 8.231±0.04 μg/ml. The jatrophane diterpenes were provisionally annotated as the primary metabolites of the bioactive leaves extract based on multiplex of LC/MS/MS, molecular network, and NMR. In silico studies revealed the potentiality of the compounds in the most active extract to 3CLpro, where compound 20 showed the best binding affinity. Further attention should be paid to the isolation of various jatrophane diterpenes from Euphorbia and evaluating their effects on SARS-Cov-2 and its molecular targets.  相似文献   

13.
The 2,2,4-trimethyl-1,2-dihydroquinolinyl substituted 1,2,3-triazole derivatives were designed as potential inhibitors of PDE4B. These compounds were synthesized via a multi-step sequence consisting of copper-catalyzed azide-alkyne cycloaddition (CuAAC) as a key step in aqueous media. The required alkynes were prepared from nimesulide via N-propargylation and then nitro group reduction followed by a CAN mediated modified Skraup reaction of the resulting amine. All the synthesized compounds showed PDE4B inhibitory properties in vitro at 30 μM with two compounds showing >50% inhibition that were supported by the in silico docking results of these compounds at the active site of PDE4B. Three of these PDE4 inhibitors showed promising cytotoxic properties against A549 human lung cancer cells in vitro with IC50 ∼8–9 μM.  相似文献   

14.
New thiazolylpyrazolyl coumarin derivatives were synthesized and tested for their anticancer potential in vitro against five different human cell lines, including breast MCF-7, lung A549, prostate PC3, liver HepG2 and normal melanocyte HFB4. Breast carcinoma revealed higher sensitivity towards compounds 7a, 8c, 9b, 9c and 9d with IC50 values ranging from 5.41 to 10.75 μM in comparison to the reference drug doxorubicin (IC50 = 6.73 μM). In addition, no noticeable toxicity was exhibited towards normal cells HFB4. Moreover, in vitro studies of the VEGFR-2 inhibition in human breast cancer MCF-7 cell line for the promising cytotoxic compounds showed that compounds 7a, 8c, 9b, 9c and 9d were potent inhibitors at low micromolar concentrations (IC50 = 0.034–0.582 μM) compared to the reference drug, sorafenib (IC50 = 0.019 μM). Several theoretical and experimental studies were done to reveal the molecular mechanisms that control breast carcinoma metastasis. The mechanistic effectiveness in cell cycle progression, apoptotic induction and gene regulation were assessed for the promising compound 9d due to its remarkable cytotoxic activity against MCF-7 and significant VEGFR-2 inhibition. Flow cytometeric analysis showed that compound 9d induced cell growth cessation at G2/M phase and increased the percentage of cells at pre-G1 phase that stimulates the apoptotic death of MCF-7 cells. Furthermore, real time PCR assay illustrated that compound 9d up regulated p53 gene expression and elevated Bax/Bcl-2 ratio which confirmed the mechanistic pathway of compound 9d. Moreover, the apoptotic induction of breast cancer cells MCF-7 was enhanced effectively through activation of caspases-7 and 9 by compound 9d. On the other hand, a set of in silico methods such as molecular docking, molecular dynamics simulation, QSAR analysis as well as ADMET analysis was performed in order to study the protein-ligand interactions and the relationship between the physicochemical properties and the inhibitory activity of the promising compounds 7a, 8c and 9d. Based on the aforementioned findings, compound 9d could be considered as effective apoptosis modulator and promising lead for future development of new anti-breast cancer agents.  相似文献   

15.
A series of 18β-glycyrrhetinic acid (GA) conjugated aminobenzothiazole derivatives were designed, synthesized and evaluated for disruption activity of Hsp90-Cdc37 as well as the effects of in vitro cell migration. These compounds exhibited relatively good disruption activity against Hsp90-Cdc37 with IC50 values in low micromolar range. A docking study of the most active compound 11g revealed key interactions between 11g and Hsp90-Cdc37 complex in which the benzothiazole moiety and the amine chain group were important for improving activity. It is noteworthy that further antitumor activity screening revealed that some compounds exhibited better inhibitory activity than the commercial anticancer drug 5-FU and showed potent suppression activity against drug-resistant cancer cells. In particular, compound 11?g appeared to be the most potent compound against the A549 cell line, at least partly, by inhibition of the activity of Hsp90 and apoptosis induction. The treatment of A549 cells with compound 11g resulted in inhibition of in vitro cell migration through wound healing assay and S phase of cell cycle arrested. In addition, 11g-induced apoptosis was significantly facilitated in A549 cells. Thus, we conclude that GA aminobenzothiazole derivatives may be the potential Hsp90-Cdc37 disruptors with the ability to suppress cells migration and reversed drug-resistant.  相似文献   

16.
To explore new scaffolds for the treat of Alzheimer’s disease appears to be an inspiring goal. In this context, a series of varyingly substituted flavonols and 4-thioflavonols have been designed and synthesized efficiently. All the newly synthesized compounds were characterized unambiguously by common spectroscopic techniques (IR, 1H-, 13C NMR) and mass spectrometry (EI-MS). All the derivatives (124) were evaluated in vitro for their inhibitory potential against cholinesterase enzymes. The results exhibited that these derivatives were potent selective inhibitors of acetylcholinesterase (AChE), except the compound 11 which was selective inhibitor of butyrylcholinesterase (BChE), with varying degree of IC50 values. Remarkably, the compounds 20 and 23 have been found the most potent almost dual inhibitors of AChE and BChE amongst the series with IC50 values even less than the standard drug. The experimental results in silico were further validated by molecular docking studies in order to find their binding modes with the active pockets of AChE and BChE enzymes.  相似文献   

17.
The molecular hybrid approach is very significant to combat various drug-resistant disorders. A simple, convenient, and cost-effective synthesis of thiazole-based chalcones is accomplished, using a molecular hybrid approach, in two steps. The compound 1-(2-phenylthiazol-4-yl)ethanone ( 3 ) was used as the main intermediate for the synthesis of 3-(arylidene)-1-(2-phenylthiazol-4-yl)prop-2-en-1-ones ( 4a–f ). Thin layer chromatography was used to testify the formation and purity of all synthesized compounds. Further structural confirmation of all compounds was achieved via different spectroscopic techniques (UV, FT-IR, 1H- and 13C-NMR) and elemental analysis. All synthesized compounds were tested for their α-amylase inhibition and antioxidant potential. The cytotoxic property of compounds was also tested with in vitro haemolytic assay. All tested compounds showed moderate to excellent α-amylase inhibition and antioxidant activity. All tested compounds are found safe to use due to their less toxicity when compared to the standard Triton X. The molecular docking simulation study of all synthesized compounds was also conducted to examine the best binding interactions with human pancreatic α-amylase (pdb: 4 W93) using AutodockVina. The molecular docking results authenticated the in vitro amylase inhibition results, i.e., 3-(3-Methoxyphenyl)-1-(2-phenylthiazol-4-yl)prop-2-en-1-one ( 4e ) exhibited lowest IC50 value 54.09±0.11 μM with a binding energy of −7.898 kcal/mol.  相似文献   

18.
The present article describes the synthesis, in vitro urease inhibition and in silico molecular docking studies of a novel series of bi-heterocyclic bi-amides. The synthesis of title compounds was initiated by benzoylation, with benzoyl chloride (1), of the key starter ethyl 2-(2-amino-1,3-thiazol-4-yl)acetate (2) in weak basic aqueous medium followed by hydrazide formation, 4, and cyclization with CS2 to reach the parent bi-heterocyclic nucleophile, N-{4-[(5-sulfanyl-1,3,4-oxadiazol-2-yl)methyl]-1,3-thiazol-2-yl}benzamide (5). Various electrophiles, 8a–l, were synthesized by a two-step process and these were finally coupled with 5 to yield the targeted bi-heterocyclic bi-amide molecules, 9a–l. The structures of the newly synthesized products were corroborated by IR, 1H NMR, 13C NMR, EI-MS and elemental analysis. The in vitro screening of these molecules against urease explored that most of the compounds exhibit potent inhibitory potential against this enzyme. The compound 9j, with IC50 value of 2.58?±?0.02?µM, exhibited most promising inhibitory activity among the series, relative to standard thiourea having IC50 value of 21.11?±?0.12?µM. In silico studies fully augmented the experimental enzyme inhibition results. Chemo-informatics analysis showed that synthesized compounds (9a–l) mostly obeyed the Lipinski's rule. Molecular docking study suggested that ligand 9j exhibited good binding energy value (?7.10?kcal/mol) and binds within the active region of target protein. So, on the basis of present investigation, it was inferred that 9j may serve as a novel scaffold for designing more potent urease inhibitors.  相似文献   

19.
With the goal to identify novel trypanothione reductase (TR) inhibitors, we performed a combination of in vitro and in silico screening approaches. Starting from a highly diverse compound set of 2,816 compounds, 21 novel TR inhibiting compounds could be identified in the initial in vitro screening campaign against T. cruzi TR. All 21 in vitro hits were used in a subsequent similarity search-based in silico screening on a database containing 200,000 physically available compounds. The similarity search resulted in a data set containing 1,204 potential TR inhibitors, which was subjected to a second in vitro screening campaign leading to 61 additional active compounds. This corresponds to an approximately 10-fold enrichment compared to the initial pure in vitro screening. In total, 82 novel TR inhibitors with activities down to the nM range could be identified proving the validity of our combined in vitro/in silico approach. Moreover, the four most active compounds, showing IC50 values of <1 μM, were selected for determining the inhibitor constant. In first on parasites assays, three compounds inhibited the proliferation of bloodstream T. brucei cell line 449 with EC50 values down to 2 μM.  相似文献   

20.
Chromones and triazoles are groups of heterocyclic compounds widely known to exhibit a broad spectrum of biological activities. The combination of these two pharmacophores could result in multiple mechanisms of action to increase the potency of anticancer drugs and reduce their side effects. The in vitro antitumor effect of eight chromone-based compounds was evaluated in breast (T-47D and MDA-MB-231) and prostate (PC3) cancer cell lines, and in non-cancerous human mammary epithelial cells (HuMEC) using a resazurin-based method. Flow cytometry was used to evaluate the cell cycle and cell death, and ɣ-H2AX detection to identify DNA damage. The compounds showed selective cytotoxicity against cancer cell lines, with (E)-2-(2-(5-(4-methoxyphenyl)-2H-1,2,3-triazol-4-yl)vinyl)-4H-chromen-4-one (compound 2 a ) being more potent in non-metastatic T-47D cells (IC50 0.65 μM). Replacing the hydrogen by a methyl group on the triazole ring in compound 2 b enhanced the cytotoxic activity up to IC50 0.24 μM in PC3, 0.32 μM in MDA-MB-231 and 0.52 μM in T-47D. Compound 2 b was 3-fold more potent than doxorubicin in PC3 (IC50 0.73 μM) and 4-fold in MDA-MB-231 (IC50 1.51 μM). The addition of tetrahydroisoindole-1,3-dione moiety in compound 5 did not improve its effectiveness in any of the cell lines but it exerted the lowest cytotoxic effect in HuMEC (IC50 221.35 μM). The compounds revealed different cytotoxic mechanisms: 2 a and 2 b induced G2/M arrest, and compound 5 did not affect the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号