首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents the development of a computational model for the topology optimization problem, using a material distribution approach, of a 2-D linear-elastic solid subjected to thermal loads, with a compliance objective function and an isoperimetric constraint on volume. Defining formally the augmented Lagrangian associated with the optimization problem, the optimality conditions are derived analytically. The results of analysis are implemented in a computer code to produce numerical solutions for the optimal topology, considering the temperature distribution independent of design. The design optimization problem is solved via a sequence of linearized subproblems. The computational model developed is tested in example problems. The influence of both the temperature and the finite element model on the optimal solution obtained is analysed.  相似文献   

2.
张照煌  李魏魏 《工程力学》2020,24(S):376-379, 386
仿生学是人类借鉴生物进化成果推进技术进步理论创新的一个重要源泉[相似文献   

3.
基于遗传算法和拓扑优化的结构多孔洞损伤识别   总被引:1,自引:0,他引:1       下载免费PDF全文
鉴于拓扑优化和遗传算法在结构损伤识别中各自的优点,本文将遗传算法、有限元和拓扑优化三种方法相结合,提出了一种用于二维结构多损伤识别的新方法。这种方法将拓扑优化的设计变量和遗传算法的参数统一化,将拓扑优化中的目标函数和约束方程与遗传算法的适应度函数联系起来,并以拓扑优化的约束方程作为控制条件参与整个遗传运算的控制。采用二进制编码遗传算法代替连续变量拓扑优化的方式对发生孔洞损伤形式的二维结构进行损伤识别,避免了利用连续变量拓扑优化进行损伤识别时参数阈值的确定可能给识别结果带来的不良影响。通过对两个二维结构模型的多损伤识别仿真计算,结果显示本方法能够很好地识别二维结构中多个位置的损伤,对于仅用拓扑优化法很难识别的轻微孔洞损伤情况,该方法也能得出与实际情况吻合良好的结果。  相似文献   

4.
In this paper, the element free Galerkin method (EFG), combined with evolutionary structural optimization method (ESO), is applied to carry out the topology optimization of the continuum structures. Considering the deletion criterion based on the stresses, the mathematical formulation of the topology optimization is developed. The objective function of this model is the minimized weight. Several numerical examples are used to prove the feasibility of the approach adopted in this paper. And the examples show the simplicity and fast convergence of the proposed method.  相似文献   

5.
In this paper, we propose an approach for reliability‐based design optimization where a structure of minimum weight subject to reliability constraints on the effective stresses is sought. The reliability‐based topology optimization problem is formulated by using the performance measure approach, and the sequential optimization and reliability assessment method is employed. This strategy allows for decoupling the reliability‐based topology optimization problem into 2 steps, namely, deterministic topology optimization and reliability analysis. In particular, the deterministic structural optimization problem subject to stress constraints is addressed with an efficient methodology based on the topological derivative concept together with a level‐set domain representation method. The resulting algorithm is applied to some benchmark problems, showing the effectiveness of the proposed approach.  相似文献   

6.
翻车保护结构(roll-over protective structure,ROPS)是安装在工程车辆驾驶室中的一套被动保护装置,能在翻车事故中为驾驶人员提供有效的保护。为解决ROPS承载能力、刚度、轻量化和侧向吸能效果之间的矛盾,将基于变密度法的拓扑优化技术引入重型矿用自卸车ROPS设计中,以解决ROPS在给定设计域内的材料最优分布问题,提高ROPS侧向吸能效果和垂向、纵向的刚度,减轻自重。首先,利用OptiStruct结构优化模块对ROPS进行拓扑优化设计,以多工况组合应变能最小为优化目标,按照国际标准规定的性能要求施加载荷和约束条件。基于拓扑优化结果,对ROPS进行详细设计。然后,利用显示动力分析软件LS-DYNA对ROPS的最终设计模型进行动态加载分析。最后对优化后ROPS的性能与原ROPS的性能进行对比分析。结果表明:拓扑优化设计后的ROPS在3个工况下都没有入侵DLV(deflection-limiting volume,挠曲极限量),满足国际标准中的承载能力要求;在侧向加载中最大能量吸收达到175 kJ,满足国际标准中的侧向能量吸收要求;相较于原ROPS,拓扑优化设计后的ROPS达到侧向能量吸收要求所需的载荷从1 324.5 kN减小到1 231 kN,加载中心点的垂向位移减小21.3%,纵向位移减小34.4%,质量减小24.1%。研究结果为重型矿用自卸车ROPS的设计提供了新方法,对后续ROPS的设计与改进有一定的指导作用。  相似文献   

7.
This article proposes an efficient approach for solving three-dimensional (3D) topology optimization problem. In this approach, the number of design variables in optimization as well as the number of degrees of freedom in structural response analysis can be reduced significantly. This is accomplished through the use of scaled boundary finite element method (SBFEM) for structural analysis under the moving morphable component (MMC)-based topology optimization framework. In the proposed method, accurate response analysis in the boundary region dictates the accuracy of the entire analysis. In this regard, an adaptive refinement scheme is developed where the refined mesh is only used in the boundary region while relating coarse mesh is used away from the boundary. Numerical examples demonstrate that the computational efficiency of 3D topology optimization can be improved effectively by the proposed approach.  相似文献   

8.
The use of topology optimization in the design of a novel stator for an ultrasonic motor (USM) is investigated. The design challenge is to produce a stator, with two resonant modes whose frequencies are in a ratio of 1:2. When driven together, these modes result in a contact point trajectory in a figure of eight shape. As a result, only one electronic amplifier is required to drive the proposed device. In contrast traditional travelling wave USM, with elliptical contact point trajectories, require two modes with equal resonant frequencies to be driven 90° out of phase, and therefore require two amplifiers, one for each mode. To achieve a suitable stator design, a slightly unconventional topology optimization problem formulation is proposed, in which the objective function is to minimize the amount of material with intermediate density, while satisfying a constraint related to the frequency ratio of selected resonant modes. The planar design produced using the optimization procedure was refined using a detailed three dimensional finite element analysis. A prototype of the proposed stator design was manufactured and experimentally characterized. Scanning laser vibrometry measurements from two positions were used to measure the figure of-eight motion. Finally, the stator was fitted with a preloaded slider to form a simple linear motor demonstrator which was characterized experimentally. The prototype motor produced a slider speed of 14 mm/s reversibly and a maximum force of 50 mN.  相似文献   

9.
为了实现尺度关联周期性多孔结构的隔振性能优化,提出一种周期性多孔结构特征值拓扑优化方法。基于子结构动态凝聚方法对多孔结构的刚度和质量矩阵进行缩减,采用局部水平集函数(LLSF)对多孔结构进行几何隐式描述,以最大化前6阶特征值为目标函数,以结构体积分数为约束条件,建立周期性多孔结构特征值拓扑优化模型,采用优化准则法对拓扑优化模型进行求解,并研究了多孔结构特征值拓扑优化的尺度效应。研究表明,该方法能有效实现尺度关联的二维和三维周期性多孔结构的特征值拓扑优化,并能大幅提高特征值拓扑优化的计算效率。  相似文献   

10.
Structural designers are reconsidering traditional design procedures using structural optimization techniques. Although shape and sizing optimization techniques have facilitated a great improvement in the emergence of new optimum designs, they are still limited by the fact that a suitable topology must be assumed initially. In this paper a hybrid algorithm entitled constrained adaptive topology optimization, or CATO is introduced. The algorithm, based on an artificial material model and an adaptive updating scheme, combines ideas from the mathematically rigorous homogenization (h) methods and the intuitive evolutionary (e) methods. The algorithm is applied to shell structures under static or free vibration situations. For the static situation, the objective is to produce the stiffest structure subject to given loading conditions, boundary conditions and material properties. For the free vibration situation, the objective is to maximize or minimize a chosen frequency. In both cases, a constraint on the structural volume/mass is applied and the optimization process is achieved by redistributing the material through the shell structure. The efficiency of the proposed algorithm is illustrated through several numerical examples of shells under either static or free vibration situations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
臂架结构是臂架起重机的关键部件,实现结构稳定的拓扑优化对其轻量化设计至关重要。基于敏度分析的结构优化方法耗时耗力,不适用于大型工程结构。在杆系结构SKO (soft kill option)法的基础上,定义了臂架结构整体稳定性和局部压杆稳定性的定量化指标,分析臂架结构抗失稳机制,给出了关联腹杆“冻结”顺序,提出了一种保证结构稳定的臂架结构拓扑优化方法,即SSKO (stability-ensured soft kill option)法。将该方法应用于刚架柱和环轨起重机组合臂架的拓扑优化中,结果表明SSKO法可实现结构的稳定拓扑,优化速度快,效果显著。  相似文献   

12.
13.
This paper will propose a more effective and efficient topology optimization method based on isogeometric analysis, termed as isogeometric topology optimization (ITO), for continuum structures using an enhanced density distribution function (DDF). The construction of the DDF involves two steps. (1)  Smoothness: the Shepard function is firstly utilized to improve the overall smoothness of nodal densities. Each nodal density is assigned to a control point of the geometry. (2) Continuity: the high-order NURBS basis functions are linearly combined with the smoothed nodal densities to construct the DDF for the design domain. The nonnegativity, partition of unity, and restricted bounds [0, 1] of both the Shepard function and NURBS basis functions can guarantee the physical meaning of material densities in the design. A topology optimization formulation to minimize the structural mean compliance is developed based on the DDF and isogeometric analysis to solve structural responses. An integration of the geometry parameterization and numerical analysis can offer the unique benefits for the optimization. Several 2D and 3D numerical examples are performed to demonstrate the effectiveness and efficiency of the proposed ITO method, and the optimized 3D designs are prototyped using the Selective Laser Sintering technique.  相似文献   

14.
As the capabilities of additive manufacturing techniques increase, topology optimization provides a promising approach to design geometrically sophisticated structures. Traditional topology optimization methods aim at finding conceptual designs, but they often do not resolve sufficiently the geometry and the structural response such that the optimized designs can be directly used for manufacturing. To overcome these limitations, this paper studies the viability of the extended finite element method (XFEM) in combination with the level-set method (LSM) for topology optimization of three dimensional structures. The LSM describes the geometry by defining the nodal level set values via explicit functions of the optimization variables. The structural response is predicted by a generalized version of the XFEM. The LSM–XFEM approach is compared against results from a traditional Solid Isotropic Material with Penalization method for two-phase “solid–void” and “solid–solid” problems. The numerical results demonstrate that the LSM–XFEM approach describes crisply the geometry and predicts the structural response with acceptable accuracy even on coarse meshes.  相似文献   

15.
Graded surfaces widely exist in natural structures and inspire engineers to apply functionally graded (FG) materials to cover structural surfaces for performance improvement, protection, or other special functionalities. However, how to design such structures with FG surfaces by topology optimization is a quite challenging problem due to the difficulty for determining material properties of structural surfaces with prescribed variation rule. This paper presents a novel projection-based method for topology optimization of this class of FG structures. Firstly, a projection process is proposed for ensuring the material properties of the surfaces vary with a prescribed function. A criterion of determining the values of parameters in projection process is given by a strict theoretical derivation, and then, a new interpolation function is established, which is capable of simultaneously obtaining clear substrate topologies and realizable FG surfaces. Though such structures are actually multimaterial gradient structures, only the design variables of single-material topology optimization problem are needed. In the current research, the classical compliance minimization problem with a mass constraint is considered and the robust formulation is used to control the length scale of substrates. Several 2D and 3D numerical examples illustrate the validity and applicability of the proposed method.  相似文献   

16.
This paper will develop a new robust topology optimization (RTO) method based on level sets for structures subject to hybrid uncertainties, with a more efficient Karhunen-Loève hyperbolic Polynomial Chaos–Chebyshev Interval method to conduct the hybrid uncertain analysis. The loadings and material properties are considered hybrid uncertainties in structures. The parameters with sufficient information are regarded as random fields, while the parameters without sufficient information are treated as intervals. The Karhunen-Loève expansion is applied to discretize random fields into a finite number of random variables, and then, the original hybrid uncertainty analysis is transformed into a new process with random and interval parameters, to which the hyperbolic Polynomial Chaos–Chebyshev Interval is employed for the uncertainty analysis. RTO is formulated to minimize a weighted sum of the mean and standard variance of the structural objective function under the worst-case scenario. Several numerical examples are employed to demonstrate the effectiveness of the proposed RTO, and Monte Carlo simulation is used to validate the numerical accuracy of our proposed method.  相似文献   

17.
Following the extended two-material density penalization scheme, a stress-based topology optimization method for the layout design of prestressed concrete structures is proposed. The Drucker–Prager yield criterion is used to predict the asymmetrical strength failure of concrete. The prestress is considered by making a reasonable assumption on the prestressing orientation in each element and adding an additional load vector to the structural equilibrium function. The proposed optimization model is thus formulated as to minimize the reinforcement material volume under Drucker–Prager yield constraints on elemental concrete local stresses. In order to give a reasonable definition of concrete local stress and prevent the stress singularity phenomenon, the local stress interpolation function and the ? -relaxation technique are adopted. The topology optimization problem is solved using the method of moving asymptotes combined with an active set strategy. Numerical examples are given to show the efficiency of the proposed optimization method in the layout design of prestressed concrete structures.  相似文献   

18.
In this article, a unified framework is introduced for robust structural topology optimization for 2D and 3D continuum and truss problems. The uncertain material parameters are modelled using a spatially correlated random field which is discretized using the Karhunen–Loève expansion. The spectral stochastic finite element method is used, with a polynomial chaos expansion to propagate uncertainties in the material characteristics to the response quantities. In continuum structures, either 2D or 3D random fields are modelled across the structural domain, while representation of the material uncertainties in linear truss elements is achieved by expanding 1D random fields along the length of the elements. Several examples demonstrate the method on both 2D and 3D continuum and truss structures, showing that this common framework provides an interesting insight into robustness versus optimality for the test problems considered.  相似文献   

19.
The most effective scheme of truss optimization considers the combined effect of topology, shape and size (TSS); however, most available studies on truss optimization by metaheuristics concentrated on one or two of the above aspects. The presence of diverse design variables and constraints in TSS optimization may account for such limited applicability of metaheuristics to this field. In this article, a recently proposed algorithm for simultaneous shape and size optimization, fully stressed design based on evolution strategy (FSD-ES), is enhanced to handle TSS optimization problems. FSD-ES combines advantages of the well-known deterministic approach of fully stressed design with potential global search of the state-of-the-art evolution strategy. A comparison of results demonstrates that the proposed optimizer reaches the same or similar solutions faster and/or is able to find lighter designs than those previously reported in the literature. Moreover, the proposed variant of FSD-ES requires no user-based tuning effort, which is desired in a practical application. The proposed methodology has been tested on a number of problems and is now ready to be applied to more complex TSS problems.  相似文献   

20.
This paper discusses an application of the topology optimization method for the design of thermoelectric generators. The proposed methodology provides the optimized geometry in accordance with various arbitrary conditions such as the types of materials, the volume of materials, and the temperature and shape of the installation position. By considering the coupled equations of state for the thermoelectric problem, we introduce an analytical model subject to these equations, which mimics the closed circuit composed of thermoelectric materials, electrodes, and a resistor. The total electric power applied to the resistor and the conversion efficiency are formulated as objective functions to be optimized. The proposed optimization method for thermoelectric generators is implemented as a geometrical optimization method using the solid isotropic material with penalization method used in topology optimizations. Simple relationships are formulated between the density function of the solid isotropic material with penalization method and the physical properties of the thermoelectric material. A sensitivity analysis for the objective functions is formulated with respect to the density function and the adjoint equations required for calculating it. Depending on the sensitivity, the density function is updated using the method of moving asymptotes. Finally, numerical examples are provided to demonstrate the validity of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号