首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kadsurenone inhibits specifically and competitively the specific binding of 3H-labeled platelet-activating factor ([3H]PAF) to rabbit platelet membranes. Since the 5-propyl analog of kadsurenone (dihydrokadsurenone) retains roughly the same potency as kadsurenone, [3H]dihydrokadsurenone was therefore synthesized through tritiation of kadsurenone. Specific binding of [3H]dihydrokadsurenone in rabbit platelet membranes is saturable. Scatchard analysis of binding data reveals the presence of a single class of binding sites with an equilibrium dissociation constant (KD) of 16.81 ( +/- 0.57) nM. The total number (Bmax) of detectable binding sites is 2.27 ( +/- 0.09) pmol/mg protein. Both C16- and C18-PAF fully displace the specific binding of (3H]dihydrokadsurenone (5 nM) with an identical ED50 of 3.6 X 10(-9) M. Dihydrokadsurenone and kadsurenone also displace the specific binding with roughly the same potency (ED50 = 4.4 X 10(-8) M). Several other PAF analogs and PAF receptor antagonists tested show relative potencies roughly similar to those found in the [3H]PAF-specific binding assay. Other pharmacological agents with no PAF antagonistic activities did not inhibit the specific binding of [3H]dihydrokadsurenone. These results agree with our previous conclusion that kadsurenone is a specific and competitive receptor antagonist and strongly suggest that PAF and the PAF receptor antagonists tested may interact at a common binding site in the PAF receptor.  相似文献   

2.
The binding of the competitive thromboxane A2/prostaglandin H2 (TXA2/PGH2) antagonist (9,11-dimethylmethano-11, 12-methano-16-(3-aza-15 alpha beta-omega-tetranor-TXA2) ([125I]PTA-OH) to membranes prepared from human platelets was characterized. [125I]PTA-OH binding to membranes from human platelets was saturable, displaceable, and dependent on protein concentration. Scatchard analysis of equilibrium binding carried out at 30 degrees C revealed one class of binding sites with a Kd of 30 +/- 4 nM and a Bmax of 1.8 +/- 0.3 pmol/mg of protein (n = 5). Kinetic analysis of the binding of [125I]PTA-OH at 0 degrees C yielded a k1 of 1.35 X 10(6) M-1 min-1 and a k-1 of 0.032 min-1, Kd = k-1/k1 = 24 nM. The potencies of a series of TXA2/PGH2 antagonists as inhibitors of [125I]PTA-OH binding was correlated with their potencies as inhibitors of platelet aggregation induced by the TXA2/PGH2 mimetic, U46619 (1 microM) (r = 0.93, p less than 0.01). A series of TXA2/PGH2 mimetics also displaced [125I]PTA-OH from its binding site, and their potencies as inhibitors of [125I]PTA-OH binding were correlated with their potencies as stimulators of platelet aggregation (r = 0.91, p less than 0.05). The IC50 values for displacement of [125I]PTA-OH by PGF2 alpha, PGD2, and the stable PGI2 analog Iloprost were greater than 25 microM, suggesting that [125I]PTA-OH does not bind to other known platelet prostaglandin receptors. These data are consistent with the notion that this binding site may represent the platelet TXA2/PGH2 receptor.  相似文献   

3.
The human platelet contains a functional 5-hydroxytryptamine (5-HT) receptor that appears to resemble the 5-HT2 subtype. In this study, we have used the iodinated derivative [125I]iodolysergic acid diethylamide ([125I]iodoLSD) in an attempt to label 5-HT receptors in human platelet and frontal cortex membranes under identical assay conditions to compare the sites labelled in these two tissues. In human frontal cortex, [125I]iodoLSD labelled a single high-affinity site (KD = 0.35 +/- 0.02 nM). Displacement of specific [125I]iodoLSD binding indicated a typical 5-HT2 receptor inhibition profile, which demonstrated a significant linear correlation (r = 0.97, p less than 0.001, n = 17) with that observed using [3H]ketanserin. However, [125I]iodoLSD (Bmax = 136 +/- 7 fmol/mg of protein) labelled significantly fewer sites than [3H]ketanserin (Bmax = 258 +/- 19 fmol/mg of protein) (p less than 0.001, n = 6). In human platelet membranes, [125I]iodoLSD labelled a single site with affinity (KD = 0.37 +/- 0.03 nM) similar to that in frontal cortex. The inhibition profile in the platelet showed significant correlation with that in frontal cortex (r = 0.96, p less than 0.001, n = 16). We conclude that the site labelled by [125I]iodoLSD in human platelet membranes is biochemically similar to that in frontal cortex and most closely resembles the 5-HT2 receptor subtype, although the discrepancy in binding capacities of [125I]iodoLSD and [3H]ketanserin raises a question about the absolute nature of this receptor.  相似文献   

4.
The characteristics of receptors for platelet-activating factor (PAF) on rabbit neutrophils are investigated in this report. The presence of PAF-specific binding to rabbit neutrophils was confirmed using radiolabeled ligand binding assays and a rabbit peritoneal neutrophil membrane preparation. Binding of PAF to the neutrophil membranes was reversible and reached equilibrium within 30 min. Scatchard analysis of PAF-specific binding to the rabbit neutrophil membranes revealed a dissociation constant (Kd) for PAF of 0.41 +/- 0.045 nM and a Bmax of 0.32 +/- 0.11 pmol of PAF receptor/mg of protein. The order of potencies of PAF receptor antagonists to inhibit the binding of 3H-PAF to rabbit peritoneal neutrophil membranes was determined. For the competition assays, 100 micrograms of neutrophil or platelet membrane protein, 0.18 nM 3H-PAF, and varying amounts of PAF antagonist were incubated at room temperature for 1 hr. PAF receptor antagonists tested were ONO-6240, brotizolam, kadsurenone, WEB-2086, L-652-731, BN-52021, CV-3988, triazolam, alprazolam, and verapamil. The orders of potencies of these PAF receptor antagonists were similar for inhibition of 3H-PAF binding to rabbit peritoneal neutrophil and platelet membranes (correlation coefficient, r = 0.97). PAF had a significantly higher affinity for rabbit neutrophil membranes (Kd = 0.41 +/- 0.045 nM), as compared with its affinity for rabbit platelet membranes (Kd = 0.87 +/- 0.092 nM). In addition, sodium was found to inhibit 3H-PAF specific binding to rabbit platelet membranes and not to affect 3H-PAF binding to neutrophil membranes. These data indicate that, although PAF receptors on rabbit platelets and neutrophils exhibit similar orders of potencies of PAF receptor antagonists to inhibit the binding of 3H-PAF, the disparity in Kd of PAF for the receptors and the effect of NaCl on the binding of 3H-PAF reveal subtle differences between the cell types.  相似文献   

5.
Previously reported methods for quantifying platelet-activating factor (PAF) binding to rabbit platelet membranes were modified for studies of PAF binding to human platelet membranes. The membranes were prepared by the "glycerol lysis" method and PAF binding was quantified by using polyethylene glycol precipitation to recover membrane-bound PAF. Optimal PAF binding required buffers containing 3 to 10 mm KCl and either 5 to 10 mM MgCl2 or 5 to 10 mM CaCl2. NaCl was not as effective as KCl and concentrations of NaCl greater than 3 mM strongly inhibited PAF binding. Maximal binding occurred after incubation for 60 min at 0 degree C and was reversed by the addition of excess unlabeled PAF. PAF binding was saturable. Scatchard analysis of PAF binding to 50 micrograms of membrane protein revealed 10.3 +/- 1.7 x 10(11) receptors per milligram of membrane protein and the receptors had a Kd of 7.6 +/- 1.9 nM. The calculated receptor number, binding affinity, and specificity of binding are similar to those previously calculated for PAF binding to intact human platelets, suggesting that the membrane binding site for PAF is the PAF receptor.  相似文献   

6.
The formyl peptide chemotaxis receptor of rabbit neutrophils and purified rabbit neutrophil plasma membranes has been identified by several affinity labeling techniques: covalent affinity cross-linking of N-formyl-Nle-Leu-Phe-Nle-125I-Tyr-Lys (125I-hexapeptide) to the membrane-bound receptor with either dimethyl suberimidate or ethylene glycol bis(succinimidyl succinate) and photoactivation of N-formyl-Nle-Leu-Phe-Nle-125I-Tyr-N epsilon-[6-[(4-azido-2-nitrophenyl)amino]hexanoyl]Lys(125I-PAL). These techniques specifically identify the receptor as a polypeptide that migrates as a broad band on sodium dodecyl sulfate-polyacrylamide electrophoresis, with Mr 50 000-65 000. The receptor has been solubilized in active form from rabbit neutrophil membranes with the detergents 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) and digitonin and from whole cells with CHAPS. Chemotaxis receptor activity was measured by the ability of the solubilized membrane material to bind 125I-hexapeptide or fMet-Leu-[3H]Phe with gel filtration or rapid filtration through poly(ethylenimine)- (PEI) treated filters as assay systems. 125I-PAL was specifically cross-linked to the same molecular weight material in the CHAPS and digitonin solubilized extract, but no specific labeling of the receptor was seen when membranes were extracted with Nonidet P-40 and Triton X-100. Therefore, although a large number of detergents are able to solubilize the receptor, it appears that some release the receptor in an inactive form. The ligand binding characteristics of fMet-Leu-[3H]Phe to the CHAPS-solubilized receptor shared properties with the membrane-bound formyl peptide receptor, both of which showed curvilinear, concave-upward Scatchard plots. Computer curve fitting with NONLIN and statistical analyses of the binding data indicated that for both the membrane-bound and solubilized receptors a two saturable sites model fitted the data significantly better (p less than 0.01) than did a one saturable site model. The characteristics of the two saturable sites model for the soluble receptor were a high-affinity site with a KD value of 1.25 +/- 0.45 nM and a low-affinity site with a KD value of 19.77 +/- 3.28 nM. A total of 35% of the two sites detected was of the higher affinity. In addition, a Hill coefficient of 0.61 +/- 0.12 was observed.  相似文献   

7.
To characterize the thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor on baboon platelets the binding of [125I]BOP was studied. [125I]BOP bound to washed baboon platelets in a saturable manner. Scatchard analysis of binding isotherms revealed a Kd of 1.12 +/- 0.08 nM and a binding capacity of 54 +/- 5 fmoles/10(8) platelets (326 sites/platelet). Several TXA2/PGH2 agonists and antagonists displaced [125I]BOP from its baboon platelet binding site with a rank order of potency similar to human platelets: I-BOP greater than SQ29548 greater than U46619 = I-PTA-OH greater than PTA-OH. I-BOP aggregated washed baboon platelets with an EC50 of 10 +/- 4 nM. The results indicate that [125I]BOP binds to the TXA2/PGH2 receptor on baboon platelets and that this receptor is similar to its human counterpart.  相似文献   

8.
The effects of changes in pH on the binding of agonists and antagonists to the human platelet thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor were determined. Competition binding studies were performed with the TXA2/PGH2 mimetic [1S-1 alpha,2 beta (5Z), 3 alpha(1E,3R*),4 alpha)]-7-[3-(3-hydroxy-4'-iodophenoxy)-1-buteny) 7-oxabicyclo-[2.2.1]-heptan-2-yl]-5-heptenoic acid ([125I]BOP). The pH optimum for binding of [125I] BOP to washed human platelets was broad with a range of pH 4-6 in contrast to that of the TXA2/PGH2 receptor antagonist 9,11-dimethyl-methano-11,12-methano-16-(3-iodo-4-hydroxyl)-13-aza-15 alpha,beta-omega-tetranorthromboxane A2 ([125I]PTA-OH) which was 7.4. Scatchard analysis of [125I]BOP binding in washed platelets at pH 7.4, 6.0, and 5.0 revealed an increase in affinity (Kd = 1.16 +/- 0.06, 0.64 +/- 0.09, and 0.48 +/- 0.05 nM, respectively) and an increase in the number of receptors (Bmax = 2807 +/- 415, 5397 +/- 636, and 7265 +/- 753 sites/platelet, respectively). The potency of I-BOP to induce shape change in washed platelets at pH 6.0 was also significantly increased from an EC50 value of 0.34 +/- 0.016 nM at pH 7.4 to 0.174 +/- 0.014 nM at pH 6.0 (n = 6, p less than 0.05). In contrast, the EC50 value for thrombin was unaffected by the change in pH. In competition binding studies with [125I]BOP, the affinity of the agonists U46619 and ONO11113 were increased at pH 6.0 compared to 7.4. In contrast, the affinity of the TXA2/PGH2 receptor antagonists I-PTA-OH, SQ29548, and L657925 were either decreased or unchanged at pH 6.0 compared to 7.4. Diethyl pyrocarbonate and N-bromosuccinimide, reagents used to modify histidine residues, reversed the increase in affinity of [125I]BOP at pH 6.0 to values equivalent to those at pH 7.4. In solubilized platelet membranes, the effects of NBS were blocked by coincubation with the TXA2/PGH2 mimetic U46619. The results suggest that agonist and antagonist binding characteristics are different for the TXA2/PGH2 receptor and that histidine residue(s) may play an important role in the binding of TXA2/PGH2 ligands to the receptor.  相似文献   

9.
The binding of 3H-labeled 1-O-alkyl-2-O-acetyl-sn-glycero-3-phosphocholine (PAF) to isolated rat liver plasma membranes and its inhibition by PAF agonists and receptor antagonists was demonstrated. The specific binding was readily saturable with a high affinity. The equilibrium dissociation constant (KD) value was 0.51 (+/- 0.14) nM and the maximal number of binding sites (Bmax) was estimated to be 141 (+/- 18) fmol/mg protein. The binding site was PAF specific-biologically inactive enantiomer was practically inactive. Two PAF-like receptor antagonists, Ono-6240 and CV-3988, and two PAF-unlike receptor antagonists, L-652,731 and kadsurenone, also displaced the binding of [3H]PAF to rat liver plasma membranes but their relative potencies in this system differed from those found in other receptor systems. Mg2+ potentiated [3H]PAF binding but inhibited it at concentrations higher than 10 mM. Both Na+ and K+ inhibited the Mg2+-potentiated binding, an ionic effect which was different from that found in rabbit platelets. These results suggest that rat livers contain PAF-specific receptors, and the receptors in rat livers are different from those found in other receptor systems.  相似文献   

10.
High affinity receptors have been demonstrated for the potent phospholipid autacoid, platelet-activating factor (PAF C18:0; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine) in a variety of tissues, including the endometrium. Because of the relative instability of PAF and our previous demonstration that lyso-PAF (1-O-alkyl-2-lyso-sn-glycero-3-phosphorylcholine), the major metabolite of PAF, displaced [3H]PAF from endometrial PAF receptor sites, we have examined the ability of bovine serum albumin (BSA) to prevent degradation of PAF and have characterized PAF and lyso-PAF binding sites in purified rabbit endometrial membranes isolated on Day 6 of pregnancy. In buffer containing the phospholipase A2 inhibitors, quinacrine (10 microM) and dibromoacetophenone (2 microM), and 0.25% BSA, 87.4 +/- 3.2% of added [3H]PAF C18:0 remained intact after incubation at 25 degrees C for 150 min. The metabolic products, lyso-PAF and 1-O-alkyl-2-acyl-sn-glycero-3-phosphorylcholine (alkylacyl-GPC), only amounted to 5.2 +/- 3.2 and 3.3 +/- 1.1, respectively. At the same concentration, rabbit serum albumin (RSA) also significantly protected [3H]PAF C18:0 from metabolism, but bovine gamma globulin (BGG) was ineffective. The presence of 0.25% BSA, however, did not protect [3H]lyso-PAF C18:0 from extensive catabolism: the major product formed was [3H]alkylacyl-GPC. Insignificant amounts of [3H]PAF were formed. Under the same conditions (25 degrees C, 150 min) in the presence of 0.25% BSA, saturation analysis revealed the presence of two types of PAF C18:0 receptors in the endometrial membranes. Type 1 sites had a Kd of 0.42 +/- 0.03 nM (mean +/- SD; n = 3) and binding capacity of 0.11 +/- 0.01 pmol/mg protein. Type 2 receptor sites had a Kd of 5.96 +/- 0.35 nM and a binding capacity of 1.59 +/- 0.22 pmol/mg protein. Thus, in the presence of BSA, the binding capacities of the two classes of receptors were markedly reduced compared to values generated previously in its absence. The Kd of the Type 1 sites was not significantly changed by the presence of BSA. A single class of saturable high-affinity binding sites was demonstrable for lyso-PAF C18:0: Kds ranged from 0.76 +/- 0.58 to 11.1 +/- 0.62 nM, depending on which method of analysis was used (Eadie-Hofstee, Scatchard-Rosenthal, or the Lundon nonlinear method). The binding capacities were equally varied, ranging from 0.15 +/- 0.08 to 15.17 +/- 4.95 pmol/mg protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Monoclonal anti-idiotypic antibodies (3C3F3E4 and 10D3F8H7) that interact with platelet activating factor (PAF) receptors were generated using an auto-anti-idiotypic approach by immunizing mice with an aldehydic analog of PAF coupled to bovine thyroglobulin. The resulting hybridomas were screened for anti-idiotypic antibody (anti-anti-PAF) with F(ab')2 fragments of affinity-purified polyclonal rabbit anti-PAF antibody. These antibodies displayed internal image properties of PAF and were considered as Ab2 beta according to the following criteria: (a) they bound to F(ab')2 fragments of the affinity-purified rabbit polyclonal anti-PAF antibody that had high affinity for PAF; (b) they inhibited [3H]PAF binding to rabbit polyclonal anti-PAF antibody and its F(ab')2 fragment in a concentration-dependent manner; (c) they displaced [3H]PAF from the anti-PAF antibody/[3H]PAF complex specifically; (d) they inhibited [3H]PAF binding to PAF receptors on rabbit platelet membranes dose dependently; (e) they displaced [3H]PAF from the [3H]PAF/PAF receptor complex specifically; and (f) they stimulated rabbit platelets to aggregate, and this aggregation could be inhibited or totally blocked by specific PAF receptor antagonists WEB 2086 and SRI 63-441. All of the above are consistent with the first successful production of monoclonal antibodies that mimic PAF and interact specifically with the PAF binding domain of PAF receptors on rabbit platelet membranes.  相似文献   

12.
Zinc ions in the micromolar range exhibited a strong inhibitory activity toward platelet activating factor (PAF)-induced human washed platelet activation, if added prior to this lipid chemical mediator. The concentration of Zn2+ required for 50% inhibition of aggregation (IC50) was inversely proportional to the concentration of PAF present. The IC50 values (in microM) for Zn2+ were 8.8 +/- 3.9, 27 +/- 5.8, and 34 +/- 1.7 against 2, 5, and 10 nM PAF, respectively (n = 3-6). Zn2+ exhibited comparable inhibitory effects on [3H]serotonin secretion and the IC50 values (in microM) were 10 +/- 1.2, 18 +/- 3.5, and 35 +/- 0.0 against 2, 5, and 10 nM PAF, respectively (n = 3). Under the same experimental conditions, aggregation and serotonin secretion induced by ADP (5 microM), arachidonic acid (3.3 microM), or thrombin (0.05 U/ml) were not inhibited. Introduction of Zn2+ within 0-2 min after PAF addition not only blocked further platelet aggregation and [3H]serotonin secretion but also caused reversal of aggregation. Analysis of [3H]PAF binding to platelets showed that Zn2+ as well as unlabeled PAF prevented the specific binding of [3H]PAF. The inhibition of [3H]PAF specific binding was proportional to the concentration of Zn2+ and the IC50 value was 18 +/- 2 microM against 1 nM [3H]PAF (n = 3). Other cations, such as Cd2+, Cu2+, and La3+, were ineffective as inhibitors of PAF at concentrations where Zn2+ showed its maximal effects. However, Cd2+ and Cu2+ at high concentrations exhibited a significant inhibition of the aggregation induced by 10 nM PAF with IC50 values being five- and sevenfold higher, respectively, than the IC50 for Zn2+, and with the IC50 values for inhibition of binding of 1 nM [3H]PAF being 5 and 19 times higher, respectively, than the IC50 for Zn2+. The specific inhibition of PAF-induced platelet activation and PAF binding to platelets suggested strongly that Zn2+ interacted with the functional receptor site of PAF or at a contiguous site.  相似文献   

13.
trans-2,5-Bis(3,4,5-trimethoxyphenyl)tetrahydrofuran (L-652,731) is found to be a potent and orally active platelet activating factor (PAF)-specific and competitive receptor antagonist. It potently inhibits [3H]PAF (1 nM) binding to receptor sites on rabbit platelet membranes with an ED50 of 2 X 10(-8) M under the assay condition without the addition of mono- or divalent cations. In a comparative study, it is more potent than CV-3988, kadsurenone, and ginkgolide B as a receptor antagonist. The equilibrium dissociation constants (KB) of L-652,731 obtained either from the inhibition of receptor binding or from the inhibition of PAF-induced aggregation of gel-filtered rabbit platelet are 2.7 X 10(-8) and 2.1 X 10(-8) M, respectively. The agreement of these KB determinations based on receptor and cellular function suggests that L-652,731 does not inhibit other steps following PAF-receptor binding. L-652,731 does not antagonize the binding of several radioligands to their respective receptor. It shows no inhibitory effect on platelet aggregation induced by other aggregating agents including thrombin, collagen, A-23187, arachidonic acid, epinephrine, and ADP. L-652,731 is orally active; it inhibits PAF-induced rat cutaneous vascular permeability with an ED50 of 30 mg/kg orally. Significant inhibitory results of L-652,731 suggest that PAF may be partially involved in cutaneous vascular permeability induced by histamine and bradykinin.  相似文献   

14.
Specific binding of 3H-labeled platelet-activating factor (PAF) to rabbit platelet membranes was found to be regulated by monovalent and divalent cations and GTP. At 0 degrees C, inhibition of [3H]PAF binding by sodium is specific, with an ED50 of 6 mM, while Li+ is 25-fold less effective. On the contrary, K+, Cs+, and Rb+ enhance the binding. The divalent cations, Mg2+, Ca2+, and Mn2+ enhance the specific binding 8-10-fold. From both Scatchard and Klotz analyses, the inhibitory effect of Na+ is apparently due to an increase in the equilibrium dissociation constant (KD) of PAF binding to its receptors. However, the Mg2+-induced enhancement of the PAF specific binding may be attributed to an increased affinity of the receptor and an increased availability of the receptor sites. In the presence of Na+, PAF receptor affinity decreased with increasing temperature with a 100-fold sharp discontinuous decrease in receptor affinity at 24 degrees C. In contrast, the Mg2+-induced increase is independent of temperature suggesting that the Mg2+ regulatory site is different from Na+ regulatory site. [3H]PAF binding is also specifically inhibited by GTP; other nucleotides have little effect. PAF also stimulates hydrolysis of [gamma-32P]GTP with an ED50 of 0.7 nM, whereas 3-O-hexadecyl-2-O-acetyl-sn-glyceryl-1-phosphorylcholine showed no activity even at 10 microM. Moreover, such stimulatory effect of PAF is dependent on Na+ and can be abolished by the PAF-specific receptor antagonist, kadsurenone, but not by an inactive analog, kadsurin B. These results suggest that the PAF receptor may be coupled with the adenylate cyclase system via an inhibitory guanine nucleotide regulatory protein.  相似文献   

15.
125I]iodopindolol: a new beta adrenergic receptor probe   总被引:1,自引:0,他引:1  
When utilizing iodohydroxybenzylpindolol (IHYP) as an adrenergic receptor probe in muscle membrane systems, the data demonstrated an unacceptably high nonspecific binding component. Bearer et al. have reported that chloramine-T induced iodination of hydroxybenzylpindolol (HYP) results in the incorporation of iodine into the indole ring rather than into the phenolic moiety as noted previously by others. These results suggest that pindolol itself can also be iodinated. Therefore, the usefulness of carrier free 125I-labeled iodopindolol (IPIN) as an adrenergic receptor probe was investigated. Using between 0.01 nM and 0.1 nM [125I]IPIN in two different muscle membrane systems, we found the nonspecific binding component to be 10% or less of total binding. When [125I]IPIN was used with membranes prepared from rat skeletal muscle, we found it to interact with a single set of high affinity binding sites (KD = 0.13 +/- 0.01 nM) with the characteristics of beta adrenergic receptors and a density of 48.5 fmoles/mg protein. IPIN binding was also studied with purified dog cardiac sarcolemma. A single set of binding sites was detected having a KD of 1.64 +/- 0.5 nM; the density of these sites was 289 fmoles/mg membrane protein. [125I]IPIN may be a useful probe for the beta adrenergic receptor of tissues in which [125I]IHYP and other beta adrenergic receptor probes have a non-specific binding component which approaches that of the specific binding component.  相似文献   

16.
S B Hwang  C S Lee  M J Cheah  T Y Shen 《Biochemistry》1983,22(20):4756-4763
By using tritiated 1-O-alkyl-2-O-acetyl-sn-glycero-3-phosphocholine (3H-PAF), we have directly identified its specific binding sites on rabbit platelet plasma membranes. The equilibrium dissociation constant for 3H-PAF is 1.36 (+/- 0.05) X 10(-9) M at 0 degrees C. The number of binding sites is 1.61 (+/- 0.34) X 10(12)/mg of membrane, which corresponds to approximately 150-300 receptors/platelet (depending on membrane vesicle orientation). Binding of 3H-PAF to rabbit platelet plasma membrane is rapid (t1/2 less than 5 min at 0 degrees C) and reversible. For a series of PAF analogues, their affinity for the receptor sites parallels with their relative potency to induce platelet aggregation. PAF can cause contraction of smooth muscle of heart, parenchymal strip, trachea, and ileum. Specific PAF receptor binding was demonstrated with purified plasma membrane from several smooth muscles and from polymorphonuclear leukocytes but not from presumably PAF nonresponsive cells such as erythrocytes and alveolar macrophages. It is likely that the interaction of PAF with these binding sites initiates the specific responses of platelets, polymorphonuclear leukocytes, and smooth muscles.  相似文献   

17.
Specific binding sites for platelet activating factor in human lung tissues   总被引:7,自引:0,他引:7  
Specific and saturable binding of [3H]-labeled 1-0-alkyl-2-0-acetyl-sn-glycero-3-phosphocholine (PAF) to membrane preparations of human lung tissues is demonstrated. The equilibrium dissociation constant (KD) was determined by Scatchard analysis to be 4.9 (+/- 1.7) X 10(-10)M and the maximal number of binding sites was estimated to be 140 (+/- 37) fmole/mg protein. The binding site is PAF specific and its selectivity toward PAF analogs is very similar to that in rabbit platelets. Two PAF receptor antagonists, kadsurenone and ginkgolide B, previously characterized in platelet systems, also displace the binding of [3H]-PAF to human lung homogenates. These data indicate that human lung tissues contain PAF specific receptors, and binding of PAF to these receptor sites may be the first step to initiate PAF-induced lung pathophysiology.  相似文献   

18.
To further characterize the human thromboxane A2 (TXA2)/prostaglandin H2 (PGH2) receptor, preparative isoelectric focusing (IEF) was performed on solubilized platelet membranes. TXA2/PGH2 receptors, assayed by specific binding of the TXA2/PGH2 antagonist [125I]PTA-OH, were electrofocused at pH 5.6. Scatchard analysis of IEF fraction pH 5.6 revealed a 180-fold concentration of TXA2/PGH2 receptors (Bmax = 3650 +/- 228 pM/mg focused, 19 +/- 4 pM/mg unfocused) with no change in binding affinity (Kd = 47 +/- 7 nM focused, 36 +/- 14 nM unfocused). SDS-polyacrylamide gel electrophoresis of photoaffinity-labelled electrofocused receptors revealed concentration of specifically labelled proteins having molecular masses of 49,000 and 27,000 Daltons. These results suggest that the human platelet TXA2/PGH2 receptor has a pI of 5.6, molecular mass of 49,000 Daltons, and may exist as a dimer. Preparative IEF should prove useful in the eventual purification of this receptor.  相似文献   

19.
Atrial natriuretic peptide (ANP) contains a disulfide which is generally considered to be required for biological activity. A truncated linear ANP analog, des-Cys105,Cys121-ANP-(104-126) (referred to as analog I), that lacks the 2 cysteine residues of the parent peptide was synthesized. In competition binding studies using rabbit lung membranes, ANP-(103-126) and analog I displaced bound 125I-ANP-(103-126) from specific ANP binding sites 100 and 73%, respectively. The concentrations of ANP-(103-126) and analog I that produced 50% inhibition of radioligand binding to the membranes were 0.26 +/- 0.07 and 0.31 +/- 0.09 nM, respectively. Radioiodinated ANP-(103-126) and analog I were chemically cross-linked to binding sites on rabbit lung membranes, and the labeled membrane proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. 125I-Analog I specifically labeled a 65,000-dalton protein and a 135,000-dalton protein which, under reducing conditions, dissociated into 65,000-dalton subunits. In contrast, 125I-ANP-(103-126) labeled specifically a nonreducible 135,000-dalton protein, in addition to the 65,000-dalton species and the reducible 135,000-dalton species. ANP-(103-126) (100 nM) stimulated rabbit lung particulate guanylate cyclase activity, whereas analog I, at the same concentration, had no effect on cyclic GMP production and did not antagonize the effect of ANP-(103-126). From these observations, we conclude that analog I is a selective ligand which binds to approximately 73% of the total ANP binding sites present in rabbit lung membranes. Unlike ANP-(103-126), analog I does not bind to the remaining 27% of the binding sites and does not activate guanylate cyclase. Binding to the cyclase-linked ANP receptor correlates with the specific labeling by 125I-ANP-(103-126) of the nonreducible 135,000-dalton membrane protein.  相似文献   

20.
One of the earliest signs of endometrial preparation for blastocyst implantation is a localized increase in capillary permeability, an event that is essentially inflammatory in character and thought to be a prerequisite for subsequent decidual tissue formation. Platelet-activating factor (PAF), chemically identified as 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine, is a very potent vasoactive compound that recently has been implicated in the implantation process. In the present study, PAF binding sites are characterized in the rabbit uterus. A specific, reversible, saturable, and thermally labile binding of [3H]PAF to uterine membranes has been demonstrated, exhibiting multiple binding sites. The equilibrium dissociation constant (Kd) of the higher affinity binding site (type 1) was 3.6 +/- 0.4 nM (mean +/- SD) with a binding capacity (Bmax) of 3.4 +/- 1.6 pmol/mg protein. The second (lower affinity) binding site (type 2) had an apparent Kd of 114.6 +/- 13.5 nM and a Bmax of 164.3 +/- 17.6 pmol/mg membrane protein, under the conditions of maximal [3H]PAF binding, 25 degrees C, 150 min. Incubations at 4 degrees C for up to 3 h yielded only 30% of the Bmax observed at 25 degrees C. In crude and purified endometrial membrane preparations in which the PAF binding was predominantly located, the affinity of the binding for PAF was significantly higher than for the whole uterus, giving Kds of 1.5 +/- 0.8 and 0.8 +/- 0.5 nM; these latter values were not significantly different. However, the Bmax values of 3.9 +/- 0.9 pmol/mg protein and 376.8 +/- 163.3 fmol/mg protein for the two endometrial preparations, respectively, did differ significantly. Kinetic analysis at 25 degrees C resulted in a calculated Kd of 3.28 +/- 1.14 nM, which did not differ from the value for for the whole uterus at the same temperature, but was greater than for the endometrial preparations. Using 4 nM [3H]PAF to selectively label only the type 1 binding sites, the relative potencies of PAF and its antagonists in displacing [3H]PAF were lyso-PAF greater than CV3988 greater than PAF greater than U66985 greater than A02405 greater than BN52021 greater than U66982. The antagonists SRI 63,441 and L652,731 were ineffective in displacing [3H]PAF at up to 5000-fold molar excess of [3H]PAF. [3H]Lyso-PAF binding at 4 nM was displaceable by PAF. All cations tested, i.e. Ca2+, Mg2+, K+, Na+, and Li+, inhibited [3H]PAF binding. Serine hydrolase inhibitors, diisopropylfluorophosphate (DFP) and phenylmethylsulfonyl fluoride (PMSF), inhibited binding, but bacitracin, leupeptin, and antipain stabilized it.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号