首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 323 毫秒
1.
采用加氢裂化催化剂对煤直接液化产物中的轻馏分油进行中型试验,研究了石脑油、喷气燃料馏分和改质柴油产率及性质随温度变化的规律,以及不同切割方案对产品收率及性质的影响。结果表明:在反应总压13.0 MPa,总催化剂体积空速0.73 h~(-1),氢油比800∶1等条件下,反应温度提高20℃对石脑油芳烃潜含量的影响不大,在64%~71%,是优质的重整原料;对喷气燃料烟点影响不大,在25.5~28.6 mm,是优质的喷气燃料;柴油凝点由-47℃提高至-40℃,仍然是优质低凝柴油,柴油BMCI值降幅由1.86增至14.97,链烷烃含量提高,同时芳烃含量降低,十六烷指数增幅由2.02单位提高至6.99单位,十六烷指数提高幅度较大。以此数据为基础,结合六级总动力学模型,实现了重石脑油芳烃潜含量、喷气燃料馏分烟点、柴油凝点等产品性质的预测,与试验值相比,预测误差在5%以内。  相似文献   

2.
以伊朗减压蜡油与采用多产异构烷烃工艺的催化裂化柴油为原料,考察了原料中催化裂化柴油的掺炼比例对加氢裂化反应的氢耗、液体收率、产品分布以及性质的影响。研究发现:(1)随着催化裂化柴油掺炼比例的增加,液体收率、氢耗、重石脑油的芳烃潜含量以及尾油BMCI值逐渐增加,喷气燃料烟点逐渐降低。(2)当催化裂化柴油掺入比例为40%时,重石脑油芳烃潜含量最高可达63.0。喷气燃料烟点为18 mm,已不能满足3号喷气燃料的标准。尾油BMCI值为14.9,较加工纯蜡油提高了1.8单位,但仍为优质的蒸汽裂解制乙烯的原料。(3)以伊朗减压蜡油掺入20%的催化裂化柴油为原料,继续考察了转化率对产品性质的影响,随着转化率的提高,重石脑油芳烃潜含量降低,喷气燃料烟点增加,柴油十六烷指数增加,尾油BMCI值降低。  相似文献   

3.
以镇海纯催化裂化柴油和催化裂化柴油混兑焦化柴油、加氢处理柴油、渣油加氢柴油以及直馏柴油为原料进行加氢改质试验,考察了不同种类混合劣质柴油对加氢改质产物分布及产品质量的影响。结果表明:在催化裂化柴油中混兑焦化柴油、加氢处理柴油、渣油加氢柴油以及直馏柴油进行加氢改质,可以有效降低精制段所需温度和装置氢耗,优化产物分布以及提高产品质量。在催化裂化柴油中混兑直馏柴油进行加氢改质,得到的重石脑油产品收率为34.8%,芳烃潜含量为65.88%,改质柴油产品收率为56.9%,柴油十六烷指数达到55以上。在实际生产中催化裂化柴油混兑直馏柴油进行加氢改质可有效提高装置经济效益。  相似文献   

4.
通过对不同馏程加氢裂化产品性质的研究发现:随着馏分的变重,芳烃的分布呈先升高后降低的趋势,且其主要富集在中间馏分油中;通过切割点的前移或后移可以有效增加目的产品收率,初馏点降低,重石脑油芳烃潜含量、柴油十六烷指数会明显降低,喷气燃料烟点及尾油BMCI值明显升高,但尾油裂解性能变化不大;终馏点升高对重石脑油芳烃潜含量影响不明显,喷气燃料烟点及柴油十六烷指数会明显升高。通过对产品馏程的调整,可以发挥加氢裂化高效灵活的特点,更好地应对市场的变化。  相似文献   

5.
研究利用现有柴油加氢装置生产重整原料的方案,考察不同类型加氢精制催化剂、加氢裂化催化剂以及原料油转化率对柴油加氢裂化反应的影响,筛选出了适宜的加氢精制与加氢裂化催化剂体系。研究发现,在相同反应条件下,Ni-Mo型加氢精制催化剂的加氢脱硫、脱氮以及芳烃饱和性能更好,更适合作为柴油加氢裂化生产重整原料的精制催化剂。在轻油型加氢裂化催化剂体系下,所产石脑油馏分的芳烃含量以及芳烃潜含量(芳潜)最高;在高中油型加氢裂化催化剂体系下,柴油产品十六烷值更高。某炼油厂2.6 Mt/a柴油加氢装置采用该方案后,石脑油收率由改造前的6.47%提升至10.47%,石脑油芳潜由44.5%增加到47.9%,实现了多产高芳潜重整原料的结构调整目标。  相似文献   

6.
对采用两段法加氢工艺加工某催化裂化柴油得到的芳烃质量分数低于25%的产品柴油窄馏分的性质进行了分析。结果显示,经两段加氢得到产物270—300℃馏分段的密度和芳烃含量最高;十六烷值随馏程增加而升高,当油品的沸点在150~300℃时,十六烷指数与十六烷值基本一致;沸点再升高,油品的十六烷指数与十六烷值的差值变大。据此推测出适当提高催化裂化柴油的终馏点,二段装填孔结构有利于270—300℃馏分扩散的、具有一定开环裂化功能的加氢催化剂是进一步改善该类工艺的方向。  相似文献   

7.
考察了不同性质柴油以及烷烃、芳烃、烯烃含量对柴油十六烷值和十六烷指数关联性的影响。结果表明,中间基原油切割得到的柴油馏分十六烷值与十六烷指数吻合性好,对环烷基原油切割得到的柴油馏分十六烷值小于十六烷指数,石蜡基原油切割得到的柴油馏分十六烷值大于十六烷指数。直馏柴油十六烷值与十六烷指数关联最佳,加氢精制柴油次之,加氢裂化柴油最差。烷烃质量分数为30%~37%时,十六烷值与十六烷指数相近;芳烃质量分数为20%~30%时,十六烷值与十六烷指数相近,芳烃含量偏高时,十六烷值与十六烷指数关联性变差。当柴油密度为0.815~0.845g/mL时,十六烷指数采用GB/T11139—89计算较准确;当柴油密度大于0.845g/mL或小于0.815g/mL时,十六烷指数采用ASTMD4737—96四变量计算公式计算较佳。  相似文献   

8.
以直馏柴油和催化裂化柴油为原料,选用柴油加氢精制催化剂与柴油缓和加氢裂化催化剂的复合催化体系,采用固定床双反应器串联、一次通过工艺进行加氢裂化转化实验。结果表明:在直馏柴油加氢裂化多产乙烯裂解原料过程中,若能将重石脑油馏分中低于90 ℃的轻组分,以及柴油馏分中高于250 ℃馏分段分离出来,可有效提高乙烯裂解原料的品质。在催化裂化柴油加氢裂化生产高辛烷值汽油和高十六烷值柴油过程中,与大于220 ℃馏分相比,200~220 ℃馏分的密度和链烷烃质量分数较低,收率约为前者的16.4%;200~220 ℃馏分单环芳烃质量分数较高,可以作为回炼组分用以提高汽油中芳烃质量分数。  相似文献   

9.
劣质催化裂化柴油加氢改质技术的开发及工业应用   总被引:4,自引:0,他引:4  
在中型试验装置上对劣质催化裂化柴油,在氢分压6.4MPa条件下进行加氢改质,通过应用加氢精制催化剂RN-1和加氢裂化催化剂RT-5的加氢改质工艺可以达生产质量收率在90%-95%的优质柴油馏分,其十六烷值较原料可提高10-15.7个单位,副产品石脑油馏分油的芳烃潜含量在70%左右,该技术在于1998年初在武汉石油化工厂300kt/a加氢改质装置上实现了首次工业应用,工业结构与中型结构一致。  相似文献   

10.
以胜利富芳重油为催化原料,对其加氢处理前后的油品性质和催化裂化性能进行了考察。结果表明:富芳重油经过加氢处理后,密度降低,饱和分含量明显升高,芳香分、胶质、沥青质、硫、氮及金属元素含量明显下降。经过加氢处理的富芳重油,催化裂化转化率提高9.26个百分点,液化气、汽油及总液体收率依次提高4.53,9.28,10.12个百分点,柴油收率降低3.69个百分点,同时干气及焦炭等非目的产物的收率显著降低。相比于直接催化裂化,富芳重油经加氢处理后再进行催化裂化所得汽油产品中烯烃质量分数降低6.64个百分点,芳烃和异构烷烃质量分数分别增加3.96,2.43个百分点;柴油产品中链烃及环烷烃含量降低,多环芳烃含量升高;汽柴油产品中的硫含量大幅降低;由于氢转移反应程度加深,低碳烯烃在液化气中的比例有所降低。  相似文献   

11.
柴油深度加氢脱硫脱芳烃工艺技术的研究与开发   总被引:4,自引:2,他引:2  
对不同性质的柴油,可采用不同的加氢脱硫脱芳烃工艺技术生产清洁柴油。直馏柴油和焦化柴油采用单段加氢工艺技术,在适宜的工艺条件下,可以生产硫质量分数低于300μg/g、芳烃质量分数低于25%、十六烷值大于53的清洁柴油;劣质催化裂化柴油采用单段加氢工艺及催化剂匹配装填技术,在适宜的工艺条件下,可以生产密度0.8576g/cm^3、硫质量分数5.0μg/g、芳烃质量分数29.6%、十六烷值39.8的清洁柴油组分;劣质催化裂化柴油采用两段加氢工艺技术,可以生产密度0.8506g/cm^3、硫质量分数1.2μg/g、芳烃质量分数16.5%的清洁柴油组分。  相似文献   

12.
生产清洁燃料的加氢技术   总被引:5,自引:1,他引:4  
介绍我国近年来研究开发成功的一系列生产清洁汽油和柴油的加氢催化剂及工艺技术,主要包括RN-10加氢精制催化剂,3974高压加氢裂化催化剂,渣油加氢RHT系列催化剂和生产优质中间馏分油的中压加氢裂化技术,提高十六烷值低柴油密度的技术,柴油深度脱硫脱芳烃技术,FCC汽油选择性加氢脱硫和加氢异构技术,加氢-PCC组合工艺等。  相似文献   

13.
某石化公司催化裂化柴油(简称催化柴油)产量大、芳烃含量高、十六烷值低、加工难度大。为解决加氢裂化装置掺炼催化柴油时氢耗大、加工费用高等问题,将催化柴油改至焦化汽柴油加氢装置进行加工,并在不同催化柴油掺炼比例下进行工业试验,对比不同掺炼比例下的原料性质、主要操作参数、产品性质和物料平衡等数据。试验结果表明:焦化汽柴油加氢装置掺炼催化柴油后,柴油产品的密度和多环芳烃含量大幅上升,十六烷值大幅降低;反应平均温度提高幅度较大。在目前生产情况下,控制催化柴油掺炼比例不大于20%比较适宜。  相似文献   

14.
中国石化北京燕山分公司(简称燕山分公司)为增产高附加值产品、提升效益,对炼油系统进行了流程协同优化。中压加氢裂化装置掺炼催化裂化柴油,由加氢裂化方案改为加氢改质方案运行,将改质柴油送入三号催化裂化装置(简称三催化装置)的提升管进行回炼;同时,将焦化蜡油改入加氢裂化装置进行加工,而蜡油加氢装置不再加工焦化蜡油以改善催化裂化原料。协同优化后,中压加氢改质装置的柴油产品十六烷值提高7个单位;三催化装置的液化气收率提高1.96百分点,汽油收率增加0.88百分点,总液体收率增加2.28百分点;高压加氢裂化装置喷气燃料产品的密度(20 ℃)降低至806 kg/m3,烟点为23.8 mm,尾油BMCI由11.8降低至10.8;蜡油加氢装置精制蜡油的饱和分质量分数提高4.68百分点,芳香分质量分数降低5.96百分点,氮质量分数降低0.06百分点,使催化裂化原料性质得以改善。通过将中压加氢改质装置的喷气燃料馏分抽出送催化裂化装置回炼,与回炼改质柴油相比,催化裂化汽油的研究法辛烷值(RON)增加1.0个单位,改质柴油十六烷值提高4.8个单位。通过全炼油板块系统性优化,燕山分公司车用柴油产品的十六烷值由53.5降低至51.5,解决了质量过剩问题。  相似文献   

15.
中国石化北京燕山分公司(简称燕山分公司)为增产高附加值产品、提升效益,对炼油系统进行了流程协同优化。中压加氢裂化装置掺炼催化裂化柴油,由加氢裂化方案改为加氢改质方案运行,将改质柴油送入三号催化裂化装置(简称三催化装置)的提升管进行回炼;同时,将焦化蜡油改入加氢裂化装置进行加工,而蜡油加氢装置不再加工焦化蜡油以改善催化裂化原料。协同优化后,中压加氢改质装置的柴油产品十六烷值提高7个单位;三催化装置的液化气收率提高1.96百分点,汽油收率增加0.88百分点,总液体收率增加2.28百分点;高压加氢裂化装置喷气燃料产品的密度(20 ℃)降低至806 kg/m3,烟点为23.8 mm,尾油BMCI由11.8降低至10.8;蜡油加氢装置精制蜡油的饱和分质量分数提高4.68百分点,芳香分质量分数降低5.96百分点,氮质量分数降低0.06百分点,使催化裂化原料性质得以改善。通过将中压加氢改质装置的喷气燃料馏分抽出送催化裂化装置回炼,与回炼改质柴油相比,催化裂化汽油的研究法辛烷值(RON)增加1.0个单位,改质柴油十六烷值提高4.8个单位。通过全炼油板块系统性优化,燕山分公司车用柴油产品的十六烷值由53.5降低至51.5,解决了质量过剩问题。  相似文献   

16.
采用浸渍法,分别以USY或改性AUSY分子筛和β分子筛为酸性组元,W和Ni为加氢组元,制备出加氢裂化催化剂CAT-1,CAT-2,进行了物性和结构对比,并以常三线直馏柴油为原料,在反应压力为10.0 MPa,反应温度为370 ℃,氢油体积比为600∶1,体积空速为1.5 h-1的条件下进行催化剂活性评价。结果表明:与催化剂CAT-1相比,CAT-2具有丰富的介孔,较高金属活性相,适宜的裂化和异构性能;增大反应压力,可提高产物中航空煤油的收率,升高反应温度,可提高石脑油收率,但对航空煤油收率影响不大;产物中航空煤油烟点提高1.1 mm,冰点下降3.1 ℃,芳烃质量分数下降0.9个百分点;尾油十六烷值提高2.5个单位。  相似文献   

17.
在3?300 mL的固定床加氢装置上,以劣质的催化裂化柴油为原料,在氢分压12 MPa、体积空速0.5 h-1、氢/油体积比800:1条件下,考察了反应温度对劣质柴油加氢精制效果的影响;并进一步研究了原料油及加氢精制生成油的窄馏分中烃族组成随馏程的变化规律。结果表明,在反应温度为370 ℃时,加氢精制效果较好,加氢精制生成油的密度为0.865 1 g/cm3,硫质量分数仅为27.51 μg/g,总芳烃脱除率达79.2%,十六烷指数提高15个单位;精制后的各窄馏分中双环及三环芳烃脱除率高达92%以上,而大多数单环芳烃与三环环烷烃集中在285~350 ℃馏分中,因此降低劣质柴油的密度、提高十六烷指数的关键是需要将该馏分段进一步加氢改质。  相似文献   

18.
研究了蜡油加氢裂化装置掺炼催化裂化柴油(简称催化柴油)对反应性能的影响。掺炼不同馏程催化柴油的研究结果表明:在相同反应条件下,随着催化柴油馏程的增加(馏程低的称为轻催柴,馏程高的称为重催柴),轻石脑油与重石脑油收率逐渐减小,重石脑油芳潜逐渐增大,喷气燃料收率先增大后减小,喷气燃料烟点逐渐降低,大于282 ℃尾油收率先减小后增大,尾油BMCI值逐渐升高;在相同反应条件下,随着轻催柴掺炼比例的增加,喷气燃料和重石脑油产率减小,重石脑油芳潜增大,喷气燃料烟点降低,大于282 ℃尾油的BMCI值逐渐增加;当轻催柴掺炼比例为30%时,尾油BMCI值为13.31,仍可作为优质的蒸汽裂解制乙烯的原料;在相同尾油收率下,随着轻催柴掺炼比例的增加,加氢裂化反应氢耗增加,轻石脑油、重石脑油收率降低,喷气燃料收率增加,重石脑油芳潜增大,喷气燃料烟点降低,尾油BMCI值增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号