首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We have investigated the factors controlling both the morphological transformation of glial processes into end feet and the deposition of extracellular matrix molecules into the overlying basement membrane by destroying meningeal cells over the hamster cerebellum by 6-hydroxydopamine administration on the day of birth. We report that within 24 h of destruction of meningeal cells, the concentrations of fibrillary collagens types I, III and IV in the glia limitans externa and the associated basement membrane molecules laminin, collagen type IV, and fibronectin are greatly diminished, resulting in the development of focal gaps in the basement membrane. The immunohistochemical integrity of the basement membrane is restored within 3 days over those surfaces of the folial apices where meningeal cells reappear. Likewise, the fibrillary collagens of the associated interstitial matrix are re-established in the same amounts as in controls. However, meningeal cells remain permanently absent from fissures and all extracellular matrix molecules tested disappear from rostral cerebellar folia covered by the anterior medullary velum. Moreover, the glial endfeet make up the superficial glia limitans only on folial apices, while they disappear from the fissurai surfaces. In primary cultures, meningeal cells produce the fibrillary collagens type I, III, and VI, and the matrix molecules fibronectin and laminin, collagen type IV, nidogen, and heparansulphate proteoglycan. These findings indicate that meningeal cells (i) produce molecular components of both the interstitial matrix and the basement membrane, and (ii) are involved in the morphological transformation of glial fibres into the endfeet which constitute the superficial glia limitans.  相似文献   

2.
Intracisternal injection of 30 micrograms 6-hydroxydopamine was used to destroy meningeal cells in the newborn hamster. After 20 or 30 days the cerebella of treated animals showed severe morphological alterations including: an absence of distinct folia anterior to the primary fissure; a disruption of lamination in the same region by the displacement of both Purkinje cells and cerebellar interneurons; a reduction in size and frequency of branching of the medullary tree with anomalous anterobasal branches and splaying; reductions in the area of the molecular layer, the total area occupied by granule cells, the length of the pial surface and the length of the Purkinje cell layer of 29, 21, 57 and 27%, respectively; disorganization of the radially organized glial scaffold by outgrowth of Bergmann glial fibers and displacement of their cell bodies, the Golgi epithelial cells, and anomalous orientation, polarity, size and branching frequency of Purkinje cell dendritic trees. These findings support our earlier hypothesis that the initial destruction of meningeal cells destabilizes the cerebellar surface (basal lamina and glia limitans superficialis) and disorganizes the glial scaffold, while the neuronal cerebellar malformations are secondary to this glial defect.  相似文献   

3.
Summary This study is a chronological analysis of 6-hydroxydopamine-induced alterations in development of the hamster cerebellar cortex. This treatment destroys the overlying meningeal cells, the sequelae of which include (i) a thinning of the external granular layer over the folial apices and a thickening in the region of the prospective fissures, reflecting a retardation of the growth of the cerebellar cortex, accompanied by displacement of the normally superficialmost GFAP-positive external granular layer cells into deeper parts of the external granular layer; (ii) a retardation of multiplication of Golgi epithelial cells which colonize the rostral third of the Purkinje cell layer so that their numbers decrease in the rostralmost folia; (iii) disturbed morphological and biochemical differentiation of the Golgi epithelial cells and their processes, the growing radial Bergmann glial fibres which detach from the pial surface and branch within the external granular layer, causing a failure in endfeet formation at the superficial glia limitans, loss of characteristic radial morphology, with the adoption of a multipolar form, and normal or increased GFAP expression and decreased S-100 expression; (iv) fragmentation of the external granular layer beyond P5 to P7 with loss of the regular lamination and foliation of the cerebellar cortex, characterized by a completely random distribution of fragments of Purkinje cell layer, molecular zone and internal granular layer. We conclude that the destruction of meningeal cells interferes with the establishment and stabilization of both the external granular layer and the secondary radial glial scaffold composed of Golgi epithelial cells, whose proliferation, growth and differentiation is subsequently disturbed. The failure to stabilize the external granular layer and to form a normal secondary radial glial scaffold is, in turn, responsible for the disruption of the regular laminar deposition of the neurons of the cerebellar cortex.  相似文献   

4.
GFAP expression patterns were compared between the brains of a spiny dogfish (Squalus acanthias) and a little skate (Raia erinacea). After anesthesia, the animals were perfused with paraformaldehyde. Serial vibratome sections were immunostained against GFAP using the avidin-biotin method. Spiny dogfish brain contained mainly uniformly-distributed, radially arranged ependymoglia. From GFAP distribution, the layered organization in both the telencephalon and the tectum were visible. In the cerebellum, the molecular and granular layers displayed conspicuously different glial structures; in the former a Bergmann glia-like population was found. No true astrocytes (i.e., stellate-shaped cells) were found. Radial glial endfeet lined all meningeal surfaces. Radial fibers also seemed to form endfeet and en passant contacts on the vessels. Plexuses of fine perivascular glial fibers also contributed to the perivascular glia. Compared with spiny dogfish brain, GFAP expression in the little skate brain was confined. Radial glia were limited to a few areas, e.g., segments of the ventricular surface of the telencephalon, and the midline of the diencephalon and mesencephalon. Scarce astrocytes occurred in every brain part, but only the optic chiasm, and the junction of the tegmentum and optic tectum contained large numbers of astrocytes. Astrocytes formed the meningeal glia limitans and the perivascular glia. No GFAP-immunopositive Bergmann glia-like structure was found. Astrocytes seen in the little skate were clearly different from the mammalian and avian ones; they had a different process system - extra large forms were frequently seen, and the meningeal and perivascular cells were spread along the surface instead of forming endfeet by processes. The differences between Squalus and Raia astroglia were much like those found between reptiles versus mammals and birds. It suggests independent and parallel glial evolutionary processes in amniotes and chondrichthyans, seemingly correlated with the thickening of the brain wall, and the growing complexity of the brain. There is no strict correlation, however, between the replacement of radial ependymoglia with astrocytes, and the local thickness of the brain wall.  相似文献   

5.
Tenascin, an astroglia-derived extracellular matrix molecule, is also expressed by radial glia of the embryonic mouse cerebellum. Expression of tenascin can thus be applied as a marker of astroglial development from an early stage, especially prior to the expression of the glial fibrillary acidic protein (GFAP) that can be detected in the postnatal cerebellum. The development of Bergmann glia, specialized cerebello-cortical astroglia with radial processes, was examined by tenascin immunohistochemistry and non-radioactive in situ hybridization histochemistry for tenascin mRNA in the developing mouse cerebellum. Tenascin-immunopositive radial glial processes extending from the ventricular zone to the pia mater retracted toward the cortex in the embryonic cerebellum and occupied a position corresponding to the Bergmann glial processes at the perinatal stage. Tenascin gene-expressing cells were generated in the ventricular zone of the cerbellar primordium and migrated radially toward the cortex. They were stratified in the layer of Bergmann glial somata at the early postnatal stage. They extended GFAP-immunopositive radial processes from the somata to the pia mater as revealed by double-labeling employing tenascin in situ hybridization histochemistry and GFAP-immunostaining. Bergmann glia are therefore considered to develop from cerebellar radial glia by migration of their somata and retraction of their processes. The tenascin gene-expressing cells displayed mitotic activity after alignment in the cortex as revealed by double-labeling by tenascin in situ hybridization histochemistry and immunohistochemical detection of the incorporated bromodeoxyuridine. The above findings suggest that the Bergmann glia in the cortex represent one of the origins of the astroglia in the developing cerebellum.  相似文献   

6.
The subpial glial limitans in the cerebellum of the lizard (Lacerta lepida) is a single layer formed by the extensions of the fibers of Bergmann's glia. These subpial extensions present a prismatic aspect, few organelles and abundant whorls of smooth endoplasmic reticulum. These whorls of endoplasmic reticulum appear as concentric and tubular membranous formations. The glial limitans is not continuous at times.  相似文献   

7.
Summary The presence of meningeal cells is necessary for the normal development of the glia limitans. Astrocytes comprising the adult glia limitans have several unique features, including many more gap junctions than is typical for astrocytes in the underlying molecular layer. This study examines the possible influence of meningeal cells on the establishment and maintenance of specific characteristics of astrocytes in the glia limitans. Primary cultures of rat astrocytes and meningeal cells were used to examine whether meningeal cells could alter astrocytic gap junctional dye coupling. Astrocytes and meningeal cells were grown on separate glass slides and co-cultured by forming a sandwich with the slides. The sides of the slides containing the cells faced each other and were separated by a 1 mm thick gasket along the edge of the slides. Although the meningeal cells and astrocytes were bathed in the same medium, they were separated by a distance of 1 mm and were not in direct contact during the co-culture period. The cells were co-cultured for 24, 48 or 72 hours, and astrocytic gap junctional dye coupling was examined using the gap-FRAP technique. The mean total recovery of fluorescence for control astrocytes was 14%. Astrocytes co-cultured with meningeal cells for 24 hours did not show a significant difference in the fluorescence recovery when compared to the control values. After 48 hours of co-culture, there was a significant increase in the gap junctional dye coupling. After 72 hours, gap junctional dye coupling continued to increase (total fluorescence recovery=53%). These results indicate that meningeal cells can influencein vitro gap junctional coupling. It is speculated that the prevalence of gap junctions in the glia limitans is due to-the meningeal-glial interaction.  相似文献   

8.
It is thought that Bergmann glial fibers assist in the inward migration of granule cells. Model systems in which there is a perturbation of either the migrating cells or the glial cell population have been useful in understanding the migratory process. In the meander tail mutant mouse, the anterior cerebellar region is agranular, whereas the posterior cerebellum is relatively unaffected by the mutation. This study presents a qualitative analysis of the development of cerebellar radial glia in mea/mea and +/mea mice aged from postnatal day 0 to adult, using an antibody against the glia specific antigen, glial fibrillary acidic protein. The results indicate a slight delay in the onset of immunoreactivity in the mea/mea cerebellum and abnormal glial formation in the anterior and posterior regions by postnatal day 5. At postnatal day 11, the full complement of labeled fibers appears to be present and although they appear abnormal in formation, they eventually reach the surface and terminate in oddly shaped and irregularly spaced endfeet. In adult mea/mea and +/mea mice, as compared to the early postnatal stages, there is a significant reduction in GFAP immunoreactive fibers. Cresyl violet stained adult mea/mea sections revealed the presence of ectopic granule cells in radial columns and small clumps at the surface of and within the molecular layer of the caudal cerebellum. Quantitative analyses revealed a 4- to 5-fold increase in the number of ectopic granule cells in lobule VIII of the mea/mea when compared with the +/mea cerebellum. These results suggest that the radial glia in the mea/mea cerebellum exhibit some uncharacteristic morphologies, but that these abnormalities are most likely the consequence of environmental alterations produced by the mutant gene.  相似文献   

9.
目的探讨小鼠小脑皮质发育过程中放射状胶质细胞的分化。方法应用免疫荧光及5-溴脱氧尿嘧啶核苷(BrdU)检测技术,标记小鼠胚胎8d至生后180d小脑(57例,分为19组,每组3只)的神经干细胞、放射状胶质细胞、普肯耶细胞及颗粒细胞。结果放射状胶质细胞于胚胎13d的神经上皮出现,尔后该细胞分化为各种神经元和贝格曼胶质细胞,并在小脑皮质层状结构的形成中起着重要作用。结论放射状胶质细胞来源于神经上皮细胞,是神经细胞和神经胶质细胞的前体细胞。在小脑皮质的发育过程中,放射状胶质细胞能分化为普肯耶细胞和颗粒细胞,并为神经细胞的迁移提供路径和支架。  相似文献   

10.
The neuroglia of the cerebellum of Salmo gairdneri Richardson, 1836, has been studied in mature and developing specimens with light and electron microscopy. The light microscopic observations were largely carried out on Golgi material. The cerebellum of the trout contains all of the neurologlial cell types described for the mammalian cerebellum, viz. ependymal cells, Golgi epithelial cells, velate protoplasmic astrocytes, smooth protoplasmic astrocytes and oligodendrocytes. In addition two types of glial elements, which combine characteristics of ependymal cells and of velate astrocytes, are found. These elements are designated as ependymoid astrocytes and astrocytoid ependymal cells. Smooth astrocytes and oligodendrocytes were observed only in later stages of development and possibly arise from the secondary matrix. The other glial cell types, as well as transitional forms between these types, are present in rather early stages, and show a similar ultrastructure. It is plausible that all these types develop from the glioblasts produced by the ventricular matrix layer. Many glial cells are radially oriented and keep in contact with the meningeal surface throughout development. The lattice formed by matrix cells in the earliest stages, and by glial cells and the axons of granule cells later on, plays a role in directing the migration of cells. Other functions of the glia, such as dividing the cerebellar cortex in synaptic compartments, are suggested. It may be concluded that the high degree of differentiation of the teleostean cerebellum is also reflected by the morphology of the neuroglia.  相似文献   

11.
It is thought that Bergmann glial fibers assist in the inward migration of granule cells. Model systems in which there is a perturbation of either the migrating cells or the glial cell population have been useful in understanding the migratory process. In the meander tail mutant mouse, the anterior cerebellar region is agranular, whereas the posterior cerebellum is relatively unaffected by the mutation. This study presents a qualitative analysis of the development of cerebellar radial glia in mea/mea and +/mea mice aged from postnatal day 0 to adult, using an antibody against the glia specific antigen, glial fibrillary acidic protein. The results indicate a slight delay in the onset of immunoreactivity in the mea/mea cerebellum and abnormal glial formation in the anterior and posterior regions by postnatal day 5. At postnatal day 11, the full complement of labeled fibers appears to be present and although they appear abnormal in formation, they eventually reach the surface and terminate in oddly shaped and irregularly spaced endfeet. In adult mea/mea and +/mea mice, as compared to the early postnatal stages, there is a significant reduction in GFAP immunoreactive fibers. Cresyl violet stained adult mea/mea sections revealed the presence of ectopic granule cells in radial columns and small clumps at the surface of and within the molecular layer of the caudal cerebellum. Quantitative analyses revealed a 4- to 5-fold increase in the number of ectopic granule cells in lobule VIII of the mea/mea when compared with the +/mea cerebellum. These results suggest that the radial glia in the mea/mea cerebellum exhibit some uncharacteristic morphologies, but that these abnormalities are most likely the consequence of environmental alterations produced by the mutant gene.  相似文献   

12.
GFAP expression patterns were compared between the brains of a spiny dogfish (Squalus acanthias) and a little skate (Raia erinacea). After anesthesia, the animals were perfused with paraformaldehyde. Serial vibratome sections were immunostained against GFAP using the avidin-biotin method. Spiny dogfish brain contained mainly uniformly-distributed, radially arranged ependymoglia. From GFAP distribution, the layered organization in both the telencephalon and the tectum were visible. In the cerebellum, the molecular and granular layers displayed conspicuously different glial structures; in the former a Bergmann glia-like population was found. No true astrocytes (i.e., stellate-shaped cells) were found. Radial glial endfeet lined all meningeal surfaces. Radial fibers also seemed to form endfeet and en passant contacts on the vessels. Plexuses of fine perivascular glial fibers also contributed to the perivascular glia. Compared with spiny dogfish brain, GFAP expression in the little skate brain was confined. Radial glia were limited to a few areas, e.g., segments of the ventricular surface of the telencephalon, and the midline of the diencephalon and mesencephalon. Scarce astrocytes occurred in every brain part, but only the optic chiasm, and the junction of the tegmentum and optic tectum contained large numbers of astrocytes. Astrocytes formed the meningeal glia limitans and the perivascular glia. No GFAP-immunopositive Bergmann glia-like structure was found. Astrocytes seen in the little skate were clearly different from the mammalian and avian ones; they had a different process system – extra large forms were frequently seen, and the meningeal and perivascular cells were spread along the surface instead of forming endfeet by processes. The differences between Squalus and Raia astroglia were much like those found between reptiles versus mammals and birds. It suggests independent and parallel glial evolutionary processes in amniotes and chondrichthyans, seemingly correlated with the thickening of the brain wall, and the growing complexity of the brain. There is no strict correlation, however, between the replacement of radial ependymoglia with astrocytes, and the local thickness of the brain wall. Accepted: 6 March 2001  相似文献   

13.
Li X  Zhang P  Yang Y  Xiong Y  Qi Y  Hu H 《Neuroscience》2008,152(2):391-406
The cerebellar cortex of protein O-mannose UDP-N-acetylglucosaminyl transferase 1 (POMGnT1) knockout mice contains discrete clusters of granule neurons that fail to migrate from the external germinal layer (EGL) to the internal granule cell layer (IGL). To test the hypothesis that the breaches in the pial basement membrane and glia limitans contribute to the formation of such heterotopias, POMGnT1 deficient mice were used to examine the mechanisms underlying these migration defects. The basement membrane, glia limitans, and granule neuron development were assessed with protein markers and immunofluorescent microscopy. Further, the integrity of the pial basement membrane, and granule neuron differentiation state were assessed by electron microscopy. Localized breaches in pial basement membrane and disruptions in the glia limitans were strongly associated with ectopia of EGL cells. In such ectopias, Bergmann glia fibers were retracted and disorganized with very few protruded into the ectopic area. Thus, migration failure was correlated with a compromised Bergmann glia scaffold. Nevertheless, the ectopic EGL cells showed characteristics of differentiated granule neurons and formed synapses with mossy fibers. Altogether, these results suggest that pial basement membrane breaches and glia limitans disruptions are the underlying causes of cerebellar granule neuron ectopia in POMGnT1 knockout mice. Moreover, migration into the IGL is not required for granule cell acquisition of certain differentiated characteristics.  相似文献   

14.
The Bergmann glia is composed of unipolar protoplasmic astrocytes in the cerebellar cortex. Bergmann glial cells locate their cell bodies around Purkinje cells, and extend radial or Bergmann fibers enwrapping synapses on Purkinje cell dendrites. During development, Bergmann fibers display a tight association with migrating granule cells, from which the concept of glia-guided neuronal migration has been proposed. Thus, it is widely known that the Bergmann glia is associated with granule cells in the developing cerebellum and with Purkinje cells in the adult cerebellum. As the information on how Bergmann glial cells are related structurally and functionally with differentiating Purkinje cells is quite fragmental, this issue has been investigated using cytochemical techniques for Bergmann glial cells. This review classifies the cytodiffer-entiation of Bergmann glial cells into four stages, that is, radial glia, migration, transformation and protoplasmic astrocytes, and then summarizes their structural relationship with Purkinje cells at each stage. The results conclude that the cytodifferentiation of Bergmann glial cells proceeds in correlation with the migration, dendritogenesis, synaptogenesis and maturation of Purkinje cells. Furthermore, morphological and molecular plasticity of this neuroglia appears to be regulated depending on the cytodifferentiation of nearby Purkinje cells. The functional relevance of this intimate neuron-glial relationship is also discussed with reference to recent studies in cell biology, cell ablation and gene knockout.  相似文献   

15.
A natural defect in rat cerebellum postnatal development has been found in the fissura prima, consisting in various complex configurations of the cerebellar layers. We investigated the genesis of fissure malformations through immunoreactions for PCNA, GFAP, GABAA α6, and calbindin to label proliferating cells of the external granular layer (egl), radial glial fibers, mature granule cells, and Purkinje cells, respectively. Results on critical stages of rat postnatal development provided interesting evidences on how the malformation develops in fissures prima and secunda. Early (postnatal day 10) at the site of malformation, the Bergmann radial glia was often retracted and showed distortions and irregular running. The interruption of GFAP‐positive radial glial fibers could fit in with the presence of clusters of PCNA‐unlabeled cells in the sites of fusion of the egl; the clusters of cells are granule cells since their soma is labeled by GABAA α6. Moreover, an altered migration of granule cell precursors to the internal granular layer was evident which, in turn, affected Purkinje cell differentiation and the growth of their dendrites. In summary, the changed relationship among glial fiber morphology, granule cell migration, and Purkinje cell differentiation suggests how the Bergmann glial fibers have a basic role in the foliation process, being the driving physical force in directing migration of the granule cells at the base of fissure. Anat Rec, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Summary The distribution of glial fibrillary acidic (GFA) protein and hyaluronectin, a hyaluronate-binding protein isolated from human brain, was compared in brain, spinal cord and optic nerves of pigs and dogs by indirect immunofluorescence with monoclonal antibodies. In spinal cord white matter the localization of the two proteins was similar, both antigens forming a mesh surrounding myelinated axons. A similar distribution of the two proteins was also observed in the periventricular glia as well as in the glia limitans of spinal cord and optic nerves. Cerebral white matter was hyaluronectin-positive, but the GFA-positive stellate astrocytes did not stain with hyaluronectin antibodies in this location. Hyaluronectin antibodies did not stain grey matter, the granular layer of the cerebellum excepted. The astrocytes identified with GFA antibodies in hyaluronectin-negative grey matter were: the fibrous astrocytes forming the glia limitans on the surface of the cerebral hemispheres; the protoplasmic astrocytes of cerebral isocortex and basal ganglia; the fibrous astrocytes of cerebral allocortex (hippocampus); Bergmann radial glia in the molecular layer of the cerebellar cortex; and fibrous astrocytes of spinal cord anterior and posterior horns. It is concluded that the hyaluronectin fraction reacting with the monoclonal antibodies is a brain-specific protein probably produced by white matter astrocytes. We propose to call this fraction brain-specific hyaluronectin, to be distinguished from other fractions reacting with polyclonal antibodies and with different localizations.  相似文献   

17.
Glial fibrillary acidic immunoreactivity in brain was examined in normal animals and in rats subjected to chronic hypoxia. Animals were exposed to a chronic normobaric adaptive hypoxia with decreasing amounts of oxygen (finally 6%) for a period of 59 and 114 days, respectively. In paraffin-embedded sections the glial fibrillary acidic protein immunoreactivity in normal and hypoxic animals was examined at three coronal levels. A mild glial fibrillary acidic protein immunoreactivity in the perivascular glial layer, external glial limitans membrane and periventricular astrocytes, as well as in some areas of hippocampus and cerebellum, was noted in normal animals. Chronic hypoxia for 114 days resulted in a marked increase of glial fibrillary acidic protein immunoreactivity in dentate gyrus of hippocampus, Bergmann glia of the cerebellum, internal capsule and pyramidal tract. On the other hand, the glial fibrillary acidic protein activity following 59 days hypoxic exposure was almost the same as controls. These results show that systemic deep chronic hypoxia (depending on the intensity and the duration) activates the endogenous expression of glial fibrillary acidic protein in astrocytes of specific brain regions. The probable significance of this finding is discussed.  相似文献   

18.
Iron is an essential, but potentially harmful, metal in the brain. In normal brain, iron has been reported to accumulate mainly in glial cells and occasionally in neurons in some particular nuclei. However, the majority of investigations have targeted the adult brain. Here, we investigated spatiotemporal localization of iron in developing and adult chicken cerebellum using iron histochemistry. Iron reactivity was not detected in the chick cerebellum until embryonic day 12. Iron accumulation was first found in mature myelinating oligodendrocytes located in the inner part of the cerebellar folium at embryonic day 14. From embryonic day 20, iron-positive mature myelinating oligodendrocytes were localized in the white matter and the granular layer. From post-hatching day 2, iron accumulation was observed in Bergmann glia in the Purkinje cell layer as well as in mature myelinating oligodendrocytes. Iron accumulation in microglia was observed in the granular and molecular layers at post-hatching month 12. Our data indicate that during cerebellar development iron is accumulated in a unique sequence according to individual requirements or microenvironmental demands.  相似文献   

19.
Summary The formation of fibrotic bridges from subpial astrocytes into the subarachnoid space of the spinal cord and the migration of Schwann cells to the central nervous system (C.N.S.) is appraised in chronically demyelinated C.N.S. lesions. Spinal cord tissue was studied from inbred, Strain 13 guinea pigs with chronic experimental allergic encephalomyelitis (EAE). It has been found that uncommitted Schwann cells are present around remyelinated fibres in nerve root entry zones, between meningeal cells at a distance from the roots and along blood vessels within the spinal cord parenchyma. It is speculated that these cells migrate via the above route to the C.N.S. In the present model, this invasion might be aided by glial fibrosis, a process which leads to surface irregularities in the spinal cord, an extensive extracellular space and possible breaches in the glia limitans through which Schwann cells might penetrate.  相似文献   

20.
Summary Previous results from our laboratory (Bejar et al. 1985) indicated that a single injection in mouse pups of the antimitotic/mutagenic agent methylazoxymethanol at postnatal day 5 typically produces hypogranular cerebella with no changes in foliation, in contrast to the severe alterations observed after the more usual injection on the day of birth. Here we report that injection of a higher dose (30 mg/kg) of methylazoxymethanol, always at postnatal day 5, leads to the additional presence of a ectopic cell layer in adult cerebellum. Immunostaining with several antibodies recognizing cell specific proteins ruled out the possibility that these ectopic cells were glial and electron microscopy indicated that they were morphologically mature granule cells. In the molecular layer of other cerebellar areas and apparently unrelated with granule cell ectopia, ectopic Golgi epithelial cells were observed. The reason for the presence of these ectopic cells of different type in the molecular layer was discussed in relation with analogous ectopias obtained by other means.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号