首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Arctic Oscillation (AO) has important effects on the sea ice change in terms of the dynamic and thermodynamic processes. However, while the dynamic processes of AO have been widely explored, the thermodynamic processes of AO need to be further discussed. In this paper, we use the fifth state-of-the-art reanalysis at European Centre for Medium-Range Weather Forecasts (ERA5) from 1979 to 2020 to investigate the relationship between AO and the surface springtime longwave (LW) cloud radiative forcing (CRF), summertime shortwave (SW) CRF in the Arctic region (65°?90°N). In addition, the contribution of CRF induced by AO to the sea ice change is also discussed. Results indicate that the positive (negative) anomalies of springtime LW CRF and summertime SW CRF are generally detected over the Arctic Ocean during the enhanced positive (negative) AO phase in spring and summer, respectively. Meanwhile, while the LW (SW) CRF generally has a positive correlation with AO index (AOI) in spring (summer) over the entire Arctic Ocean, this correlation is statistically significant over 70°?85°N and 120°W?90°E (i.e., region of interest (ROI)) in both seasons. Moreover, the response of CRF to the atmospheric conditions varies in spring and summer. We also find that the positive springtime (summertime) AOI tends to decrease (increase) the sea ice in September, and this phenomenon is especially prominent over the ROI. The sensitivity study among sea ice extent, CRF and AOI further reveals that decreases (increases) in September sea ice over the ROI are partly attributed to the springtime LW (summertime SW) CRF during the positive AOI. The present study provides a new pattern of AO affecting sea ice change via cloud radiative effects, which might benefit the sea ice forecast improvement.  相似文献   

2.
Steady response of a linear, two-layer baroclinic ocean to a steady thermal forcing was investigated on a mid-latitude -plane. Surface heat flux and its relaxation processes were parametrized as a form of heating function and Newtonian cooling term of cross interfacial velocityw in the continuity equation. Ageostrophic linear drag terms were employed to represent the western boundary layer for accomplishment of the steady circulation in the closed domain. In the interior, the dynamics belongs to thef-plane regime. The flow in the upper layer is zonal and eastward, which is the same as that expected in the channel without meridional boundary. The eastern boundary region is the so called Sverdrup region, in which the vortex stretching balances the term, thoughw contains a damping term. It directs the zonal flow southward (northward) in the south (north) followed by upwelling (downwelling) and forms the two gyres. Western boundary region is of the Stommel type except the upwelling (downwelling) in the south (north). The meridional circulation is similar to the Hadley Cell except southern and northern boundary layers. However, its strength is much greater than the latters.  相似文献   

3.
4.
利用北冰洋中心区漂流自动气象站(DAWS)2012年9月—2013年2月的观测数据,分析了北极点周围海冰漂流轨迹和速度及相关大气过程。结果显示,北冰洋中心区海冰具有不稳定漂流过程。2012年9月1日—2013年1月6日,DAWS所在海冰从西向西北方向漂流,2013年1月6日以后稳定地向东南方向漂流,平均移速为0.06m/s,最大达到0.4m/s。海冰漂流方向的突变和加速与穿极气旋和急流的影响有关。净辐射常出现短期突变过程,导致海冰从大气吸收能量,减缓了海冰的辐射冷却。爆发性增温过程的最大幅度达到30℃,是由强穿极气旋和伴随的暖湿气流向北极中心区输送引起,这种现象在中低纬度十分罕见。增温过程的作用是高空大气向冰面输送热量,导致海冰破裂,海冰硬度的脆变,减缓海冰厚度的增长,这种过程可能是北极海冰面积和厚度减少重要过程。  相似文献   

5.
This paper presents the results of reconstructing the state of ice and snow covers on the Arctic Ocean from 1948 to 2002 obtained with a couplod model of ocean circulation and sea-ice evolution. The area of the North Atlantic and Arctic Ocean north of 65° N, excluding Hudson Bay, is considered. The monthly mean ice areas and extents are analyzed. The trends of these areas are calculated separately for the periods of 1970–1979, 1979–1990, and 1990–2002. A systematic slight underestimation by the model is observed for the ice extent. This error is estimated to fit the error of 100 km in determining the position of the ice edge (i.e., close to the model resolution). In summer the model fails to reproduce many observed polynias: by observational data, the ice concentration in the central part of the Arctic Ocean constitutes around 0.8, while the model yields around 0.99. The average trend for the area of ice propagation in 1960–2002 is 13931 km2/year (or approximately 2% per decade); the trend of the ice area is 17643 km2/year (or approximately 3% per decade). This is almost three times lower than satellite data. The calculated data for ice thickness in the late winter varies from 3.5 to 4.8 m, with a clear indication of periods of thick ice (the 1960s–1970s) and relatively thin ice (the 1980s); 1995 is the starting point for quick ice-area reduction. The maximum ice accumulation is in 1977 and 1988; here, the average trend is negative: −121 km3/year (or approximately 5.5% per decade). In 1996–2002, the average change in the ice thickness constituted +1.7 cm/year. This speaks to the relatively fast disappearance of thin-ice fractions. This model also slightly underestimates the snow mass with a trend of −2.5 km3/year (almost 0.35 mm of snow per year or 0.1 mm of liquid water per year). An analysis of the monthly mean ice-drift velocity indicates the good quality of the model. Data on the average drift velocity and the results of comparisons between the calculated and satellite data for individual months are presented. A comparison with observational data from 1990–1996 in the Fram Strait shows that the model yields 3.28 m for the average ice thickness against the observed value of approximately 3.26 m. For the same period, the model yields a monthly mean transport of 291.29 km3 as compared to the observed value of 237.17 km3. A comparison between the measured and calculated drift velocities in the Fram Strait indicates that the model value is around 9.78 cm/s, which is comparable to the measured value of 10.2 cm/s. The existing problems with describing the ice redistribution by thickness gradations are illustrated by comparing data on ice thickness in the Fram Strait.  相似文献   

6.
New dynamics parameterizations in Version 5 of the Los Alamos Sea Ice Model, CICE, feature an anisotropic rheology and variable drag coefficients. This study investigates their effect on Arctic sea ice volume and age simulations, along with the effects of several pre-existing model options: a parameter that represents the mean cumulative area of ice participating in ridging, the resolution of the ice thickness distribution, and the resolution of the vertical temperature and salinity profiles.By increasing shear stress between floes, the anisotropic rheology slows the ice motion, producing a thicker, older ice pack. The inclusion of variable drag coefficients, which depend on modeled roughness elements such as deformed ice and melt pond edges, leads to thinner ice and a more realistic simulation of sea ice age. Several feedback processes act to enhance differences among the runs. Notably, if less open water is produced mechanically through ice deformational processes, the simulated ice thins relative to runs with more mechanically produced open water. Thermodynamic processes can have opposing effects on ice age and volume; for instance, growth of new ice increases the volume while decreasing the age of the pack. Therefore, age data provides additional information useful for differentiating among process parameterization effects and sensitivities to other model parameters.Resolution of thicker ice types is crucial for proper modeling of sea ice volume, because the volume of ice in the thicker ice categories determines the total ice volume. Model thickness categories tend to focus resolution for thinner ice; this paper demonstrates that 5 ice thickness categories are not enough to accurately resolve the ice thickness distribution for simulations of ice volume.  相似文献   

7.
8.
《Coastal Engineering》1988,12(2):157-174
Depth-averaged, one-dimensional and two-dimensional numerical models of bed and suspended particulate sediment transport provide unreliable answers for siltation and erosion quantities in situations dominated by three-dimensional flow patterns, as occur in harbour entrances due to flow separation and wind and density currents. Consequently, a numerical scheme has been developed which solves the complete three-dimensional diffusion-advection equation for suspended sediment concentration and thereby makes possible the study of siltation problems in complex, three-dimensional flows. The model analogue is based on a splitting technique and employs a mixed characteristics and finite difference approach. The accuracy and usefulness of the resulting scheme have been investigated by applying it to a number of hypothetical situations and to a laboratory situation involving the transport and dispersal of lightweight sediment. The results of the various tests show that the proposed approach works well and provides a useful basis for the study of practical problems.  相似文献   

9.
10.
11.
基于质点-网格模式的海冰厚度变化过程数值模拟   总被引:4,自引:3,他引:4  
根据渤海冰情,在海冰动力学和热力学研究基础上,应用一种质点-网格海冰模式于渤海海域.该模式采用了质点-网格法,有效地避免了传统模式的数值扩散问题.该模式采用了冰厚分布函数,用多种类型冰代替用于渤海业务预报的平整冰、堆积冰和开阔水3-level模式.进行理想场的数值试验,模拟冰厚变化动力过程.还使用该模式和业务预报模式对于实际渤海冰情进行了不同个例的预报试验,发现该模式在提高冰外缘线预报精度方面有一定的优势.  相似文献   

12.
13.
研究了海冰热力模式中的各种辐射参数化方案,对比了模式计算的太阳短波辐射、大气长波辐射以及海冰热力变化,并利用渤海和波罗的海观测资料进行比较和误差分析.冬季大部分时间太阳短波辐射对海冰热力过程的作用有限.简单计算方案一般满足海冰模式要求.误差主要受云和冰雪表面与大气之间的多重反射影响.长波辐射对表面热平衡和海冰质量变化起重要作用.长波辐射参数化方案的计算结果受环境因素影响.云量参数化有待进一步改进.海冰模式计算结果的精度与长波辐射计算精度有一致性.  相似文献   

14.
We generalize the problem of evaluation of currents caused by the action of breeze winds to the three-dimensional case. In the “solid-lid” approximation, the problem is reduced to the numerical solution of a two-dimensional equation for the integral current function (with complex-valued coefficients) with subsequent evaluation of the components of current velocity according to analytic formulas. The breeze is specified as acting in a narrow coastal strip in the form of a zonal wind. The three-dimensional structure and the variations of currents near the west boundary of the Kerch Strait as functions of time are studied in detail.  相似文献   

15.
We present a linear Boltzmann equation to model wave scattering in the Marginal Ice Zone (the region of ocean which consists of broken ice floes). The equation is derived by two methods, the first based on Meylan et al. [Meylan, M.H., Squire, V.A., Fox, C., 1997. Towards realism in modeling ocean wave behavior in marginal ice zones. J. Geophys. Res. 102 (C10), 22981–22991] and second based on Masson and LeBlond [Masson, D., LeBlond, P., 1989. Spectral evolution of wind-generated surface gravity waves in a dispersed ice field. J. Fluid Mech. 202, 111–136]. This linear Boltzmann equation, we believe, is more suitable than the equation presented in Masson and LeBlond [Masson, D., LeBlond, P., 1989. Spectral evolution of wind-generated surface gravity waves in a dispersed ice field. J. Fluid Mech. 202, 111–136] because of its simpler form, because it is a differential rather than difference equation and because it does not depend on any assumptions about the ice floe geometry. However, the linear Boltzmann equation presented here is equivalent to the equation in Masson and LeBlond [Masson, D., LeBlond, P., 1989. Spectral evolution of wind-generated surface gravity waves in a dispersed ice field. J. Fluid Mech. 202, 111–136] since it is derived from their equation. Furthermore, the linear Boltzmann equation is also derived independently using the argument in Meylan et al. [Meylan, M.H., Squire, V.A., Fox, C., 1997. Towards realism in modeling ocean wave behavior in marginal ice zones. J. Geophys. Res. 102 (C10), 22981–22991]. We also present details of how the scattering kernel in the linear Boltzmann equation is found from the scattering by an individual ice floe and show how the linear Boltzmann equation can be solved straightforwardly in certain cases.  相似文献   

16.
细粒酒精模型冰物理力学性质评价的新指标   总被引:1,自引:0,他引:1  
依据酒精细粒模型冰制冰过程中的物理本质和控制细粒酒精模型冰物理力学性质的物理本质,建立了一项适合于喷雾技术细粒模型冰性质评价综合指标.阐明了这一评价指标的物理意义,并给出这一指标与细粒酒精模型冰物理力学性质参数的关系.  相似文献   

17.
Potential flow based vortex numerical methods have been widely used in aerodynamics and hydrodynamics. In these methods, vortices shed from lifting bodies are traced by using vortex filaments or dipole panels. When the wake elements encounter a downstream body, such as a rudder behind a propeller or a stator behind a rotor, a treatment is necessary to divert the wake elements to pass by the body. This treatment is vital to make wake simulations realistic and to satisfy the non-penetration condition during wake body interaction. It also helps to avoid pure numerical disturbances such as when a vortex filament or an edge of a dipole panel passes through the collection point of a body element; this is a singularity for induced velocity and it will introduce a large numerical disturbance. This necessary treatment for three-dimensional problems with geometrical complexity has not been found to date. In this study, a wake impingement model was developed to divert wake elements to slip over the body surface, model the vortex/body interaction, and predict forces on fluctuating components. The model was also tested on configurations of oscillating foils in tandem with an existing panel method code. Simulation results with the wake impingement model are shown to be in closer agreement with limited published experimental data than those without the model. With the established wake impingement model, force fluctuations on the after body due to the wake vortex impingement were investigated based on a series of simulations. The series varied several parameters including distance between two foils, oscillating frequency, span, rear foil pitch angle, swap angle and vertical position.  相似文献   

18.
非线性波浪时域计算的三维耦合模型   总被引:2,自引:1,他引:2  
将计算区域Ω划分为内域Ω1和外域Ω22=Ω-Ω1),外域控制方程采用改进线性频散特性的二维Boussinesq方程,用预报一校正法数值求解;结构物附近的内域控制方程为三维Navier-Stokes方程,由VOF方法数值求解。通过在外域和内域相匹配的交界面上设置合适的速度和波面边界条件,建立了三维非线性波浪时域计算的耦合模型。模拟试验表明:(1)耦合模型数值波浪水池可以产生稳定的、重复性较好的波动过程;(2)用耦合模型数值波浪水池求解较大浅水区域上的非线性波浪数值计算问题可以取得较高的计算效率,同时又能得出结构物附近的复杂流场。  相似文献   

19.
The hydrodynamics and water quality in Hakata Bay, Japan, are strongly affected by the seasonal variations in both the gravitational circulation and the stratification in the bay. The three-dimensional hydrodynamics and water quality model has been developed to simulate the long-term transport and fate of pollutants in the system. The model is unique in that it completely integrates the refined modelling of the hydrodynamics, biochemical reactions and the ecosystem in the coastal areas. It is a 3-dimensional segmented model which is capable of resolving mean daily variations in all the parameters relevant to pollution control. It predicts daily fluctuations in the oxygen content at different depths in water throughout the year. It takes into account transport and settling of pollutant particles. It predicts light penetration from computed turbidity variations. It includes interactions between the ecosystem and water quality, through nutrient cycling and photosynthesis. The model has been calibrated well against the data set of historical water quality observations in Hakata Bay.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号