首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ObjectivesThe present in situ study investigated the effect of Inula viscosa tea on the pellicle’s acid protective properties and on initial oral biofilm formation.DesignBiofilm formation was performed on bovine enamel slabs on individual maxillary splints. Following 1 min of pellicle formation, eight subjects rinsed for 10 min with Inula viscosa tea and the splints remained for 8 h intraorally. Samples carried after 1-min rinsing with CHX (0.2%) or without rinse served as controls. BacLight™ staining, 4′,6-diamidino-2-phenylindole (DAPI)-staining and fluorescence in situ hybridization (FISH) were used for fluorescence microscopic detection of adherent bacteria. For investigation of acid protective properties, three subjects rinsed for 10 min with Inula viscosa tea after 1 min pellicle formation and kept the splints intraorally for further 19 min. Physiological 30-min pellicles and native enamel samples served as controls. After HCl incubation of the samples ex-vivo over 120 s (pH 2.0, 2.3, 3.0) calcium- and phosphate release were quantified photometrically. Potential influences on the pellicle’s ultrastructure by Inula viscosa tea were evaluated by transmission electron microscopy (TEM).ResultsApplication of Inula viscosa tea yielded a significant reduction of adherent bacteria on all enamel samples as detected by fluorescence microscopy. For calcium- and phosphate release no significant effect was recorded. TEM investigation indicated a modification of the pellicle’s ultrastructure, but no enhanced protection against erosive noxae.ConclusionRinsing with Inula viscosa tea influences the bacterial colonization on enamel in situ over 8 h but has no impact on acid protective properties of the pellicle.  相似文献   

2.
ObjectivesThis study investigated the effect of two concentrations of fluoride in milk, 2.5 and 5.0 ppm, on the prevention of demineralisation with a cariogenic challenge compared with milk with 0 ppm F.MethodsIn a controlled, randomised, cross-over, double-blind in situ study, 23 subjects wore a lower removable appliance with 2 enamel slabs for 21 days during each study arm. Subjects used F-free toothpaste and the cariogenic challenge comprised of five 2 min dippings per day in 12% sucrose. The slabs were dipped in 50 ml of milk with 0 ppm, 2.5 ppm or 5.0 ppm F twice daily for 5 min. Subjects drank 100 ml twice per day of the same milk. Slabs were analysed with Knoop microhardness to assess changes in mineralisation.ResultsResults showed that enamel was softened in all groups but the extent of enamel softness was reduced with an increasing concentration of F in milk, being highly significant for both F groups compared to the control (p < 0.0001). 5.0 ppm F group showed a trend towards less softening compared to the 2.5 ppm F but was not statistically significant.ConclusionsIn our in situ model, 2.5 and 5.0 ppm F in milk significantly protected enamel from demineralisation.  相似文献   

3.
ObjectiveTo evaluate, in vitro, the effect of Mg(OH)2 dentifrice, and the influence of the number of experimental days, on the extrinsic (citric acid –CA) and intrinsic (hydrochloric acid –HCl) enamel erosion models.DesignHuman enamel slabs were selected according to surface hardness and randomly assigned to 3 groups (n = 9) as follows: non-fluoridated (negative control), NaF (1450 ppm F- positive control) and Mg(OH)2 (2%) dentifrices. The slabs were daily submitted to a 2-h period of pellicle formation and, over a period of 5 days, submitted to cycles (3×/day) of erosive challenge (CA 0.05 M, pH = 3.75 or HCl 0.01 M, pH = 2 for 30 s), treatment (1 min −1:3 w/w of dentifrice/distilled water) and remineralization (artificial saliva/120 min). Enamel changes were determined by surface hardness loss (SHL) for each day and mechanical profilometry analysis. Data were analyzed by two-way ANOVA followed by Tukey’s test to % SHL and one-way ANOVA to profilometry (p < 0.05).ResultsThe number of experimental days influenced the erosion process for the two types of erosion models (p < 0.001). Mg(OH)2-containing dentifrices were effective in reducing enamel extrinsic acid erosion as determined by % SHL (p < 0.001) when compared to the control group, being better than positive control (p < 0.001); however, the dentifrices were not effective for the intrinsic model (p = 0.295). With regards to surface wear, no statistically significant differences were found among the groups for CA (p = 0.225) and HCl (p = 0.526).ConclusionThe findings suggest that Mg(OH)2 dentifrices might protect enamel against slight erosion, but protection was not effective for stronger acid erosion.  相似文献   

4.
ObjectivePhosphoryl oligosaccharides of calcium (POs-Ca) are highly soluble calcium source made from potato starch. The aim of this study was to investigate the optimal concentrations of POs-Ca for the remineralization of subsurface enamel lesions in vitro.DesignDemineralized bovine enamel slabs (n = 5) were remineralized in vitro for 24 h at 37 °C with artificial saliva (AS) containing 0–0.74% POs-Ca to adjust the Ca/P ratio to 0.4–3.0, then sectioned and analysed by transversal microradiography (TMR). The data were analysed by Scheffe's post hoc test. The Ca/P ratio with most remineralization was used to investigate the effect of calcium on enamel remineralization (n = 11). The demineralized slabs were treated with AS with calcium-chloride- (CaCl2-) or POs-Ca with an identical calcium content, and sectioned for TMR and wide-angle X-ray diffraction (WAXRD) analyses to evaluate the local changes in hydroxyapatite (HAp) crystal content. The data were analysed using the Mann–Whitney U-test.ResultsThe highest mineral recovery rate resulted from addition of POs-Ca to adjust the Ca/P to 1.67. At this ratio, the mineral recovery rate for AS containing POs-Ca (24.2 ± 7.4%) was significantly higher than that for AS containing CaCl2 (12.5 ± 11.3%) (mean ± SD, p < 0.05). The recovery rate of HAp crystallites for AS containing POs-Ca (35.7 ± 10.9%) was also significantly higher than that for AS containing CaCl2 (23.1 ± 13.5%) (p < 0.05). The restored crystallites were oriented in the same directions as in sound enamel.ConclusionsPOs-Ca effectively enhances enamel remineralization with ordered HAp at a Ca/P ratio of 1.67.  相似文献   

5.
ObjectiveInvestigate the effects of dentin pretreatment with 2.5% titanium tetrafluoride (TiF4) aqueous solution followed by two-step self-etching (CLE/Clearfil SE Bond) and one-step self-etching adhesive systems (SBU/Single Bond Universal) on carious lesion inhibition at the tooth-restoration interface using an in situ model.DesignSixty-four cavities at the enamel-dentin junction of dental fragments were randomly distributed according to groups (n = 16): 1) TiF4 + CLE; 2) TiF4 + SBU; 3) CLE; 4) SBU. Cavities were restored using resin composite, and placed in intraoral palatal devices used by 16 volunteers for 21 days, to induce caries formation in situ. The fragments were then ground-flat to perform Knoop microhardness tests. Nine indentations were performed on each enamel and dentin substrate, subjacent to the restoration. Analysis of variance and Tukey’s test were applied.ResultsEnamel: groups receiving TiF4 dentin pretreatment (regardless of adhesive system and tooth-restoration interface distance) presented higher hardness means at a depth of 25 μm from the outer tooth surface (p < 0.0001). Dentin: groups receiving CLE presented higher means when applying TiF4 pretreatment, whereas groups restored with SBU presented higher means without pretreatment (p = 0.0003).ConclusionsDentin pretreatment with TiF4 inhibited demineralization of the enamel interface in situ, regardless of the adhesive, and TiF4 pretreatment followed by CLE application showed higher potential for inhibiting dentin demineralization at the interface.  相似文献   

6.
ObjectiveThis study evaluated the effect of toothpastes containing 1100 ppm F associated or not with micrometric or nano-sized sodium trimetaphosphate (TMP) on enamel demineralization in vitro, using a pH cycling model.DesignBovine enamel blocks (4 mm × 4 mm, n = 96) were randomly allocated into eight groups (n = 12), according to the test toothpastes: Placebo (without fluoride or TMP); 1100 ppm F (1100F); 1100F plus micrometric TMP at concentrations of 1%, 3% or 6%; and 1100F plus nanosized TMP at 1%, 3% or 6%. Blocks were treated 2×/day with slurries of toothpastes and submitted to a pH cycling regimen for five days. Next, final surface hardness (SHf), integrated hardness loss (IHL), differential profile of integrated hardness loss (ΔIHL) and enamel fluoride (F) concentrations were determined. Data were analyzed by ANOVA and Student-Newman-Keuls’ test (p < 0.05).ResultsThe use of 1100F/3%TMPnano led to SHf 30% higher (p < 0.001) and IHL  80% lower (p < 0.001) when compared to 1100F. This toothpaste also resulted in ∼64% reduction of mineral loss (ΔIHL) when compared to 1100F. Moreover, the addition of nano-sized TMP promoted increases in enamel F uptake of 90%, 160% and 100%, respectively for the concentrations of 1%, 3% and 6%, when compared to 1100F (p < 0.001).ConclusionThe addition of nano-sized TMP at 3% to a conventional toothpaste significantly decreased enamel demineralization when compared to its counterparts without TMP or supplemented with micrometric TMP.  相似文献   

7.
ObjectivesApplication of the recently developed optical method based on the monitoring of the specular reflection intensity to study the protective potential of the salivary pellicle layer against early enamel erosion.MethodsThe erosion progression was compared between two treatment groups: enamel samples coated by the 15 h-in vitro-formed salivary pellicle layer (group P, n = 90) and the non-coated enamel surfaces (control group C, n = 90). Different severity of the erosive impact was modelled by the enamel incubation in 1% citric acid (pH = 3.6) for 2, 4, 8, 10 or 15 min. Erosion quantification was performed by the optical method as well as by the microhardness and calcium release analyses.ResultsOptical assessment of the erosion progression showed erosion inhibition by the in vitro salivary pellicle in short term acidic treatments (≤4 min) which was also confirmed by microhardness measurements proving significantly less (p < 0.05) enamel softening in the group P at 2 and 4 min of erosion compared to the group C. SEM images demonstrated less etched enamel interfaces in the group P at short erosion durations as well.ConclusionsMonitoring of the specular reflection intensity can be successfully applied to quantify early erosion progression in comparative studies. In vitro salivary pellicle (2 h) provides erosion inhibition but only in short term acidic exposures.Clinical significanceThe proposed optical technique is a promising tool for the fast and non-invasive erosion quantification in clinical studies.  相似文献   

8.
ObjectivesTo investigate the effect of fluoride (0, 275 and 1250 ppm F; NaF) in combination with normal and low salivary flow rates on enamel surface loss and fluoride uptake using an erosion–remineralization–abrasion cycling model.DesignEnamel specimens were randomly assigned to 6 experimental groups (n = 8). Specimens were individually placed in custom made devices, creating a sealed chamber on the enamel surface, connected to a peristaltic pump. Citric acid was injected into the chamber for 2 min followed by artificial saliva at 0.5 (normal flow) or 0.05 (low flow) ml/min, for 60 min. This cycle was repeated 4×/day, for 5 days. Toothbrushing with abrasive suspensions containing fluoride was performed for 2 min (15 s of actual brushing) 2×/day. Surface loss was measured by optical profilometry. KOH-soluble fluoride and enamel fluoride uptake were determined after the cycling phase. Data were analysed by two-way ANOVA.ResultsNo significant interactions between fluoride concentration and salivary flow were observed for any tested variable. Low caused more surface loss than normal flow rate (p < 0.01). At both flow rates, surface loss for 0 was higher than for 275, which did not differ from 1250 ppm F. KOH-soluble and structurally-bound enamel fluoride uptake were significantly different between fluoride concentrations with 1250 > 275 > 0 ppm F (p < 0.01).ConclusionsSodium fluoride reduced enamel erosion/abrasion, although no additional protection was provided by the higher concentration. Higher erosion progression was observed in low salivary flow rates. Fluoride was not able to compensate for the differences in surface loss between flow rates.  相似文献   

9.
ObjectiveThe present in situ - investigation aimed to specify the impact of pure hydroxyapatite microclusters on initial bioadhesion and bacterial colonization at the tooth surface.DesignPellicle formation was carried out in situ on bovine enamel slabs (9 subjects). After 1 min of pellicle formation rinses with 8 ml of hydroxyapatite (HA) microclusters (5%) in bidestilled water or chlorhexidine 0.2% were performed. As negative control no rinse was adopted. In situ biofilm formation was promoted by the intraoral slab exposure for 8 h overnight. Afterwards initial bacterial adhesion was quantified by DAPI staining and bacterial viability was determined in vivo/in vitro by live/dead-staining (BacLight). SEM analysis evaluated the efficacy of the mouthrinse to accumulate hydroxyapatite microclusters at the specimens’ surface and spit-out samples of the testsolution were investigated by TEM.ResultsCompared to the control (2.36 × 106 ± 2.01 × 106 bacteria/cm2), significantly reduced amounts of adherent bacteria were detected on specimens rinsed with chlorhexidine 0.2% (8.73 × 104 ± 1.37 × 105 bacteria/cm2) and likewise after rinses with the hydroxyapatite testsolution (2.08 × 105 ± 2.85 × 105 bacteria/cm2, p < 0.001). No demonstrable effect of HA-particles on Streptococcus mutans viability could be shown. SEM analysis confirmed the temporary adsorption of hydroxyapatite microclusters at the tooth surface. Adhesive interactions of HA-particles with oral bacteria were shown by TEM.ConclusionHydroxyapatite microclusters reduced initial bacterial adhesion to enamel in situ considerably and could therefore sensibly supplement current approaches in dental prophylaxis.  相似文献   

10.
ObjectiveThis study evaluated the combined effect of fluoride varnish to Er:YAG or Nd:YAG laser on permeability of eroded root dentine.DesignSixty slabs of bovine root dentine (2 × 2 × 2 mm) were eroded with citric acid 0.3% (pH 3.2) during 2 h and then kept in artificial saliva during 24 h. Specimens were randomly assigned in 6 groups (n = 10), to receive the following treatments: fluoride varnish; fluoride varnish + Er:YAG laser; fluoride varnish + Nd:YAG laser; non-fluoride varnish; non-fluoride varnish + Er:YAG laser; non-fluoride varnish + Nd:YAG laser. The Er:YAG (100 mJ, 3 Hz) and Nd:YAG (70 mJ, 15 Hz) were applied for 10 s. Specimens were subjected to further erosive challenges with citric acid 0.3% 4×/day, during 1 min, for 5 days, remaining in artificial saliva between cycles. Dentin permeability was then assessed. Two-way ANOVA demonstrated no significant interaction between laser and varnish (p = 0.858).ResultsNo effect was also detected for the main factor varnish (p = 0.768), while permeability of eroded root dentin was significantly lower when such substrate was laser-irradiated, no matter the laser source (p < 0.001).ConclusionsThis study concluded that Er:YAG and Nd:YAG lasers can be employed to control the permeability of eroded root dentin, regardless of fluoride varnish application.  相似文献   

11.
AimTo test the hypothesis that changes in enamel component volumes (mineral, organic, and water volumes, and permeability) are graded from outer to inner enamel after a short bleaching procedure.Materials and methodsExtracted unerupted human third molars had half of their crowns bleached (single bleaching session, 3 × 15 min), and tooth shade changes in bleached parts were analyzed with a spectrophotometer. Ground sections were prepared, component volumes and permeability were quantified at histological points located at varying distances from the enamel surface (n = 10 points/location), representing conditions before and after bleaching.ResultsTooth shade changes were significant (p < 0.001; 95% CI = −1/−8; power = 99%), and most of the enamel layer was unaffected after bleaching, except at the outer layers. Multiple analysis of covariances revealed that most of the variance of the change in enamel composition after bleaching was explained by the combination of the set of types of component volume (in decreasing order of relevance: mineral loss, organic gain, water gain, and decrease in permeability) with the set of distances from the enamel surface (graded from the enamel surface inward) (canonical R2 = 0.97; p < 0.0001; power > 99%).ConclusionsChanges in enamel composition after a short bleaching procedure followed a gradient within component volumes (mineral loss > organic gain > water gain > decrease in permeability) and decreased from the enamel surface inward.  相似文献   

12.
ObjectiveThe aim was to investigate the effects of fluoride, strontium, theobromine and their combinations on caries lesion rehardening and fluoridation (EFU) under pH cycling conditions.DesignHuman enamel specimens were demineralized at 37 °C for 24 h using a pH 5.0 solution containing 50 mM lactic acid and 0.2% Carbopol 907 which was 50% saturated with respect to hydroxyapatite. Lesions were assigned to nine treatment groups (n = 16) based on Knoop surface microhardness indentation length.Treatmentaqueous solutions were: placebo, 11.9 mM sodium fluoride (F), 23.8 mM sodium fluoride (2 × F), 1.1 mM strontium chloride hexahydrate (Sr), 1.1 mM F theobromine, Sr + theobromine, F + Sr, F + theobromine, F + Sr + theobromine. Lesions were pH cycled for 5d (daily protocol: 3 × 1min-treatment; 2 × 60min-demineralization; 4 × 60 min & overnight-artificial saliva). Knoop indentation length was measured again and%surface microhardness recovery (%SMHr) calculated. EFU was determined using the acid-etch technique. Data were analysed using ANOVA.ResultsModel showed fluoride dose-response for both variables (2 × F > F > placebo). For%SMHr, F + Sr+/−theobromine resulted in more rehardening than F, however less than 2 × F. F + theobromine was similar to F. For EFU, F + Sr was inferior to F, F + theobromine and F + Sr + theobromine which were similar and inferior to 2 × F. In absence of fluoride, Sr, theobromine or Sr + theobromine were virtually indistinguishable from placebo and inferior to F.ConclusionsIt can be concluded that a) strontium aids rehardening but not EFU and only in presence of fluoride; b) theobromine does not appear to offer any anti-caries benefits in this model; c) there are no synergistic effects between strontium and theobromine in the presence or absence of fluoride.  相似文献   

13.
《Archives of oral biology》2014,59(12):1384-1390
ObjectiveSince some probiotic bacteria are cariogenic themselves, their suitability for caries management is questionable. Inactivated bacteria or their supernatants have been found to exert probiotic effects, whilst having several advantages compared with living bacteria. We hypothesized that viable and heat-inactivated Bifidobacterium animalis BB12 reduces the cariogenicity of Streptococcus mutans (SM) in vitro.DesignWe assessed mono- and mixed species biofilms of SM and viable or heat-inactivated BB12. Biofilms were grown in a continuous-culture-system under cariogenic conditions on smooth proximal enamel or cavitated dentine. For each of eight experimental subsets (4 biofilms × 2 hard-tissue conditions), a total of 32 specimens was used. After 10 days, bacterial numbers of 12 biofilms per group were analysed, and all specimens submitted to transversal microradiography.ResultsMineral loss was higher in cavitated dentine than smooth enamel for all biofilms (p < 0.001, t-test). BB12-monospecies biofilms induced significantly less mineral loss than SM in both enamel (p < 0.05) and dentine (p < 0.001). Viable BB12 did not significantly reduce cariogenicity of SM (p > 0.05), whilst heat-inactivated BB12 decreased cariogenicity of SM in dentinal cavities (p < 0.01). Bacterial numbers were higher on dentine than enamel (p < 0.05), but not significantly influenced by biofilm species (p > 0.05).ConclusionsHeat-inactivated BB12 reduced the cariogenicity of SM in dentinal cavities in vitro. Inactivated probiotics might be suitable for caries control.  相似文献   

14.
PurposeThis study aimed to evaluate the effect of different storage periods in artificial saliva and thermal cycling on Knoop hardness of 8 commercial brands of resin denture teeth.MethodsEigth different brands of resin denture teeth were evaluated (Artplus group, Biolux group, Biotone IPN group, Myerson group, SR Orthosit group, Trilux group, Trubyte Biotone group, and Vipi Dent Plus group). Twenty-four teeth of each brand had their occlusal surfaces ground flat and were embedded in autopolymerized acrylic resin. After polishing, the teeth were submitted to different conditions: (1) immersion in distilled water at 37 ± 2 °C for 48 ± 2 h (control); (2) storage in artificial saliva at 37 ± 2 °C for 15, 30 and 60 days, and (3) thermal cycling between 5 and 55 °C with 30-s dwell times for 5000 cycles. Knoop hardness test was performed after each condition. Data were analyzed with two-way ANOVA and Tukey's test (α = .05).ResultsIn general, SR Orthosit group presented the highest statistically significant Knoop hardness value while Myerson group exhibited the smallest statistically significant mean (P < .05) in the control period, after thermal cycling, and after all storage periods. The Knoop hardness means obtained before thermal cycling procedure (20.34 ± 4.45 KHN) were statistically higher than those reached after thermal cycling (19.77 ± 4.13 KHN). All brands of resin denture teeth were significantly softened after storage period in artificial saliva.ConclusionStorage in saliva and thermal cycling significantly reduced the Knoop hardness of the resin denture teeth. SR Orthosit denture teeth showed the highest Knoop hardness values regardless the condition tested.  相似文献   

15.
ObjectivesThis study evaluated the effect of fluoride and non-fluoride sealants on hardness decrease (HD) and marginal adaptation (MA) on enamel substrates after cariogenic challenge.MethodsOcclusal enamel blocks, from human third molars, were randomly divided into six groups (n = 12), according to occlusal fissures condition (S – sound; C – caries-like lesion; CF – caries-like lesion + topical fluoride) and sealants (F – FluroShield; H – Helioseal Clear Chroma). Lesion depths were 79.3 ± 33.9 and 61.3 ± 23.9 for C and CF groups, respectively. Sealants were placed on occlusal surface and stored at 100% humidity (37 °C; 24 h/d). HD was measured by cross-sectional microhardness analysis at the sealant margin distances: ?1 (under sealant), 0 (sealant margin), 1, 2 (outer sealant). Sealant MA was observed by polarized light microscopy and scored according to: 0 – failure (no sealant MA or total sealant loss); 1 – success (sealant MA present). MA and HD were analysed by ANOVA-R and mixed model analysis, respectively.ResultsFor HD (ΔS), F values (6900.5 ± 3686.6) were significantly lower than H values (8534.6 ± 5375.3) regardless of enamel substrates and sealant margin distances. Significant differences were observed among sealant margin distances: ?1 (5934.0 ± 3282.6) < 0 (8701.5 ± 6175.7) = 1 (8473.2 ± 4299.4) = 2 (7761.5 ± 4035.1), regardless of sealant and substrate. MA was similar for all groups (p  0.05).ConclusionMA was not affected by sealant type or substrate condition, whereas enamel HD was favourably impacted by fluoride in the sealant. In addition, sealants were more effective as a physical barrier than as its chemical potency in reducing enamel HD.Clinical significanceSealing with a fluoride material is a recommended procedure to prevent caries of occlusal permanent molars in high-caries-risk patients, even though those exhibiting white spot lesions, since the enamel hardness decrease when fluoride sealant was used in vitro.  相似文献   

16.
《Dental materials》2021,37(9):1325-1336
ObjectiveTo fabricate and characterize dental composites with calcium type pre-reacted glass-ionomer (PRG-Ca) fillers.MethodsPRG-Ca fillers were prepared by the reaction of calcium fluoroaluminosilicate glass with polyacrylic acid. Seven dental composites were produced from the same organic matrix (70/30 wt% Bis-GMA/TEGDMA), with partial replacement of barium borosilicate (BaBSi) fillers (60 wt%) by PRG-Ca fillers (wt%): E0 (0) – control, E1 (10), E2 (20), E3 (30), E4 (40), E5 (50) and E6 (60). Enamel remineralization was evaluated in caries-like enamel lesions induced by S. mutans biofilm using micro-CT. The following properties were characterized: degree of conversion (DC%), roughness (Ra), Knoop hardness (KHN), flexural strength (FS), flexural modulus (FM), water sorption (Wsp), water solubility (Wsl), and translucency (TP). Data were analyzed to one-way ANOVA and Tukey’s HSD test (α = 0.05).ResultsAll composites with PRG-Ca induced enamel remineralization. E0 and E1 presented similar and highest DC% than E2 = E3 = E4 = E5 = E6. Ra and KHN were not influenced by PRG-Ca fillers (p < 0.05). The higher the content of PRG-Ca, the lower FS, FM and TP (p < 0.05). Wsp increased linearly with the content of PRG-Ca fillers (p < 0.05). E6 presented the highest Wsl (p < 0.05), while the Wsl of the other composites were not different from each other (p > 0.05).SignificanceIncorporation of 10–40 wt.% of PRG-Ca fillers endowed remineralizing potential to dental composites without jeopardizing the overall behavior of their physicochemical properties. Dental composites with PRG-Ca fillers seems to be a good alternative for reinforcing the enamel against caries development.  相似文献   

17.
《Dental materials》2020,36(2):210-220
ObjectiveDisruption of the demineralization–remineralization balance could trigger the development of dental caries, making it challenging for enamel to “self-heal”. Thus, extrinsic assistance is needed to restore enamel lesions and stop undermining progression. The aim of this study was to investigate enamel remineralization in a simulated oral environment via poly (amino amine) (PAMAM) dendrimers quantitatively.MethodsBovine enamel specimens were shaken in demineralization solution (pH 4.5, 37 °C, 50 rpm/min) for 72 h to create initial enamel carious lesions. The subsurface-demineralized specimens were then divided into four groups: enamel treated with PAMAM-NH2, enamel treated with PAMAM−COOH, enamel treated with PAMAM−OH, and enamel treated with deionized water. The treated specimens underwent subsequent 12-day pH cycling. Enamel blocks were analyzed by transverse microradiography (TMR), surface microhardness testing and scanning electron microscopy (SEM) before and after demineralization and pH cycling.ResultsGroups treated with PAMAM dendrimers showed lower lesion depth and less mineral loss, attained more vertical-section surface microhardness recovery, and adsorbed more mineral deposits (p < 0.05). The enamel lesion remineralization values of PAMAM-NH2, PAMAM-COOH, and PAMAM-OH groups were 76.42 ± 3.32%, 60.07 ± 5.92% and 54.52 ± 7.81%, respectively.SignificanceIn conclusion, PAMAM with different terminal groups could induce enamel remineralization, among which PAMAM-NH2 showed the most prominent competence, followed by PAMAM-COOH and PAMAM-OH, in that order.  相似文献   

18.
ObjectivesThis study analysed the effect of frequency of intake and amount of fluoride in milk on the remineralisation of artificial enamel and dentine caries lesions ex vivo/in situ.Materials and methodsPre-demineralised bovine enamel and dentine slabs were randomly allocated into 5 groups and fixed in removable appliances used by subjects for 7 days in each phase. Each treatment comprised milk containing 2.5 ppm fluoride daily (T1), or every other day (T2), 5.0 ppm F daily (T3), or every other day (T4) or no treatment (T5).ResultsEnamel alterations were quantified by surface hardness recovery (%SHR) and transversal microradiography (TMR), and in dentine by TMR only. Data were analysed by ANOVA and Tukey’s test (p < 0.05). For enamel, the highest %SHR was found for T1 and T3 compared to control, without significant differences between them. All groups showed positive values of ΔΔZ − T1 (247.3 ± 198.5); T2 (110.9 ± 303.2); T3 (226.0 ± 299.2); T5 (5.0 ± 288.0), except T4 (−274.5 ± 407.3). For dentine, the only group that presented remineralisation was T2 (350.0 ± 657.5).ConclusionsFluoridated milk daily seems to have higher remineralising effect on enamel than its use every other day. Dentine, does not seem to benefit from daily use of fluoridated milk.  相似文献   

19.
PurposeThe purpose of this study was to evaluate the effect of pretreatment using phosphoric acid, sodium hypochlorite and sulfinic acid sodium salt on the bonding of one-step self-etching adhesives to root canal dentin.MethodsThirty-six single-rooted sound human premolars were randomly assigned into three groups before applying the one-step self-etching adhesive. These comprised a control group with no pretreatment, an NC group that received phosphoric acid and subsequent sodium hypochlorite gel pretreatments, and an NC + AC group that received an additional treatment with sulfinic acid sodium salt following the same pretreatment applied to the NC group. Microtensile bond strength measurements, bonding interface observations by scanning electron microscopy (SEM), elemental analyses by X-ray photoelectron spectroscopy (XPS) and degree of polymerization (DOP) analyses by Raman spectroscopy were subsequently performed.ResultsThe bond strength was significantly higher in the NC + AC group than in the other two groups (Control: P = 000.1 and NC: P = 0.004). SEM observations showed that resin tags were present in the dentinal tubules in the NC and NC + AC groups. Compared to the control group, the adhesive resin layer had a lower DOP in the NC group, while the DOP for the NC + AC group was higher than that of the NC specimens.ConclusionsBonding to root canal dentin was improved by applying sulfinic acid sodium salt in addition to treatment with phosphoric acid followed by sodium hypochlorite. The DOP of the adhesive resin was reduced by sodium hypochlorite and subsequently restored by applying sulfinic acid sodium salt.  相似文献   

20.
ObjectiveTo investigate the erosion and abrasion inhibiting effect of CPP-ACP/NaF and xylitol/NaF varnishes.MethodsBovine enamel samples (n = 40) were exposed to the following treatments (n = 10): NaF varnish (Duraphat®, positive control); CPP-ACP/NaF varnish (MI varnishTM); xylitol/NaF (Profluorid®) or distilled and deionized water (MilliQ®, negative control). The samples were submitted for 3 days to 4 cycles/day of erosion (5 min in Sprite Zero) and 2 cycles of abrasion/day after the first and last erosive challenge, with a toothbrush machine and slurries of a placebo toothpaste for 15 s (50 strokes/s). Among the cycles and after the last daily cycle, the specimens remained in artificial saliva. The change in the enamel surface was evaluated by using 3D non-contact optical profilometry with surface roughness (Ra and Sa values) and tooth structure loss (TSL) measurements. Scanning electron microscopy (SEM) assessed the enamel topographic characteristics. Differences in the Ra, Sa and TSL among treatments were tested using one-way ANOVA followed by the Tukey test.ResultsAll varnishes promoted better results for Ra and Sa values than the negative control (p = 0.0001), without difference among them (p > 0.05). However, CPP-ACP/NaF varnish stimulated fewer TSL (7.09 ± 0.70 μm) compared to NaF varnish (10.33 ± 1.36 μm, p = 0.002), xylitol/NaF varnish (9.96 ± 0.41 μm, p = 0.007) and the negative control (18.38 ± 3.32 μm, p = 0.0001).ConclusionA single-application of fluoride topical varnishes was effective in reducing enamel wear. The CPP-ACP/NaF varnish had the best effect against enamel loss from an erosion-abrasion challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号