首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental data were acquired for: (1) the ignition temperatures of nitrogen–diluted ethylene and propylene by counterflowing heated air for various strain rates and system pressures up to 7 atm; (2) the laminar flame speeds of mixtures of air with acetylene, ethylene, ethane, propylene, and propane, deduced from an outwardly propagating spherical flame in a constant-pressure chamber, for extensive ranges of lean-to-rich equivalence ratio and system pressure up to 5 atm. These data, respectively, relevant for low- to intermediate-temperature ignition chemistry and high-temperature flame chemistry, were subsequently compared with calculated results using a literature C1–C3 mechanism and an ethylene mechanism. Noticeable differences were observed in the comparison for both mechanisms, and sensitivity analyses were conducted to identify the reactions of importance.  相似文献   

2.
Direct numerical simulations were performed to study the autoignition process of n-heptane fuel spray in a turbulent field. For the solution of the carrier gas fluid, the Eulerian method is employed, while for the fuel droplets, the Lagrangian method is used. Droplets are initialized at random locations in a two-dimensional isotropic turbulent field. A chemistry mechanism for n-heptane with 44 species and 112 reactions was adopted to describe the chemical reactions. Three cases with the same initial global equivalence ratio (0.5) and different initial gas phase temperatures (1100, 1200, and 1300 K) were simulated. In addition, two cases with initial global equivalence ratios of 1.0 and 1.5 and initial temperature 1300 K were simulated to examine the effect of equivalence ratio. Evolution of temperature, species mass fraction, reaction rate, and the joint PDF of temperature and equivalence ratio are presented. Effects of the initial gas temperature and equivalence ratio on vaporization and ignition are discussed. A correlation was derived relating ignition delay times to temperature and equivalence ratio. It was confirmed that with the increase of initial temperature, the autoignition occurs earlier. With the increase of the initial equivalence ratio, however, autoignition occurs later due to a larger decrease in gas phase temperature caused by fuel droplet evaporation. The results obtained in this study are expected to be constructive in understanding fuel spray combustion, such as that in homogeneous charge compression ignition systems.  相似文献   

3.
We study flame acceleration and deflagration-to-detonation transition (DDT) in channels with obstacles using 2D and 3D reactive Navier–Stokes numerical simulations. The energy release rate for the stoichiometric H2–air mixture is modeled by a one-step Arrhenius kinetics. Computations show that at initial stages, the flame and flow acceleration is caused by thermal expansion of hot combustion products. At later stages, shock–flame interactions, Rayleigh–Taylor, Richtmyer–Meshkov, and Kelvin–Helmholtz instabilities, and flame–vortex interactions in obstacle wakes become responsible for the increase of the flame surface area, the energy-release rate, and, eventually, the shock strength. Computations performed for different channel widths d with the distance between obstacles d and the constant blockage ratio 0.5 reproduce the main regimes observed in experiments: choking flames, quasi-detonations, and detonations. For quasi-detonations, both the initial DDT and succeeding detonation reignitions occur when the Mach stem, created by the reflection of the leading shock from the bottom wall, collides with an obstacle. As the size of the system increases, the time to DDT and the distance to DDT increase linearly with d2. We also observe an intermediate regime of fast flame propagation in which local detonations periodically appear behind the leading shock, but do not reach it.  相似文献   

4.
The aim of the present work was to characterize both the effects of pressure and of hydrogen addition on methane/air premixed laminar flames. The experimental setup consists of a spherical combustion chamber coupled to a classical shadowgraphy system. Flame pictures are recorded by a high speed camera. Global equivalence ratios were varied from 0.7 to 1.2 for the initial pressure range from 0.1 to 0.5 MPa. The mole fraction of hydrogen in the methane + hydrogen mixture was varied from 0 to 0.2. Experimental results were compared to calculations using a detailed chemical kinetic scheme (GRIMECH 3.0). First, the results for atmospheric laminar CH4/air flames were compared to the literature. Very good agreements were obtained both for laminar burning velocities and for burned gas Markstein length. Then, increasing the hydrogen content in the mixture was found to be responsible for an increase in the laminar burning velocity and for a reduction of the flame dependence on stretch. Transport effects, through the reduction of the fuel Lewis number, play a role in reducing the sensitivity of the fundamental flame velocity to the stretch. Finally, when the pressure was increased, the laminar burning velocity decreased for all mixtures. The pressure domain was limited to 0.5 MPa due to the onset of instabilities at pressures above this value.  相似文献   

5.
Large eddy simulation coupled with the linear eddy model (LEM) is employed for the simulation of n-heptane spray flames to investigate the low temperature ignition and combustion process in a constant-volume combustion vessel under diesel-engine relevant conditions. Parametric studies are performed to give a comprehensive understanding of the ignition processes. The non-reacting case is firstly carried out to validate the present model by comparing the predicted results with the experimental data from the Engine Combustion Network (ECN). Good agreements are observed in terms of liquid and vapour penetration length, as well as the mixture fraction distributions at different times and different axial locations. For the reacting cases, the flame index was introduced to distinguish between the premixed and non-premixed combustion. A reaction region (RR) parameter is used to investigate the ignition and combustion characteristics, and to distinguish the different combustion stages. Results show that the two-stage combustion process can be identified in spray flames, and different ignition positions in the mixture fraction versus RR space are well described at low and high initial ambient temperatures. At an initial condition of 850 K, the first-stage ignition is initiated at the fuel-lean region, followed by the reactions in fuel-rich regions. Then high-temperature reaction occurs mainly at the places with mixture concentration around stoichiometric mixture fraction. While at an initial temperature of 1000 K, the first-stage ignition occurs at the fuel-rich region first, then it moves towards fuel-richer region. Afterwards, the high-temperature reactions move back to the stoichiometric mixture fraction region. For all of the initial temperatures considered, high-temperature ignition kernels are initiated at the regions richer than stoichiometric mixture fraction. By increasing the initial ambient temperature, the high-temperature ignition kernels move towards richer mixture regions. And after the spray flames gets quasi-steady, most heat is released at the stoichiometric mixture fraction regions. In addition, combustion mode analysis based on key intermediate species illustrates three-mode combustion processes in diesel spray flames.  相似文献   

6.
Combustion phenomena change as the conditions in which they are occurring change. Proper understanding and reliable prediction of these phenomena, including important explosion indexes (e.g., flammability limits, explosion pressures), are required for achieving safe and optimal performance of industrial processes and creating new applications. To this end, we investigated the influence of the residence time on aforementioned parameters of n-butane–oxygen mixture and a typical mixture for ethylene oxide production: methane–ethylene–oxygen, focusing on how elevated conditions affect the upper explosion limit and the explosion pressure. Elevated initial conditions (T = 230 °C, P = 4–16 bar) cause pre-ignition reactions to occur in the regime of the low temperature oxidation mechanism (LTOM). These reactions change the mixture composition prior to ignition. For both mixtures investigated, these changes in the initial mixture composition, due to pre-ignition reactions, result in a different explosion pressure. This is significant, because pressure rise is used as the ignition criterion. Consequently, a different classification of the investigated mixtures, as flammable or non-flammable, is possible, depending on the residence time prior to ignition. The experimental results are compared with theoretical calculations performed using detailed reaction kinetic models.  相似文献   

7.
8.
This article investigates the effect of steam on the ignition of single particles of solid fuels in a drop tube furnace under air and simulated oxy-fuel conditions. Three solid fuels, all in the size range 125–150 µm, were used in this study; specifically, a low rank sub-bituminous Colombian coal, a low-rank/high-ash sub-bituminous Brazilian coal and a charcoal residue from black acacia. For each solid fuel, particles were burned at a constant drop tube furnace wall temperature of 1475?K, in six different mixtures of O2/N2/CO2/H2O, which allowed simulating dry and wet conventional and oxy-fuel combustion conditions. A high-speed camera was used to record the ignition process and the collected images were treated to characterize the ignition mode (either gas-phase or surface mode) and to calculate the ignition delay times. The Colombian coal particles ignite predominately in the gas-phase for all test conditions, but under simulated oxy-fuel conditions there is a decrease in the occurrence of this ignition mode; the charcoal particles experience surface ignition regardless of the test condition; and the Brazilian coal particles ignite predominately in the gas-phase when combustion occurs in mixtures of O2/N2/H2O, but under simulated oxy-fuel conditions the ignition occurs predominantly on the surface. The ignition delay times for particles that ignited in the gas-phase are smaller than those that ignited on the surface, and generally the simulated oxy-fuel conditions retard the onset of both gas-phase and surface ignition. The addition of steam decreases the gas-phase and surface ignition delay times of the particles of both coals under simulated oxy-fuel conditions, but has a small impact on the gas-phase ignition delay times when the combustion occurs in mixtures of O2/N2/H2O. The steam gasification reaction is likely to be responsible for the steam effect on the ignition delay times through the production of highly flammable species that promote the onset of ignition.  相似文献   

9.
In this paper, results of applying a non-uniform magnetic field on a ferrofluid (kerosene and 4 vol% Fe3O4 ) flow in a vertical tube have been reported. The hydrodynamics and thermal behavior of the flow are investigated numerically using the two phase mixture model and the control volume technique. Two positive and negative magnetic field gradients have been examined. Based on the obtained results the Nusselt number can be controlled externally using the magnetic field with different intensity and gradients. It is concluded that the magnetic field with negative gradient acts similar to Buoyancy force and augments the Nusselt number, while the magnetic field with positive gradient decreases it. Also with the negative gradient of the magnetic field, pumping power increases and vice versa for the positive gradient case.  相似文献   

10.
Understanding of ignition processes is central to design for reliable and safe aerospace combustor systems. Ignition is influenced by many factors including combustor geometry, flow conditions, fuel composition, turbulence intensity, ignition source, and energy deposition method. A toroidal jet-stirred reactor (TJSR) utilizes bulk fluid motion, presence of recirculation zones, a bulk residence time, and turbulence intensities which emulate characteristics relevant to cavity stabilized and swirl stabilized combustors. In this work, a TJSR was used to quantify ignitability and time-to-ignition of premixed ethylene and air. The effects of inlet temperature, residence time, and reactivity were studied on forced ignition processes. Experimental conditions ranged from residence times of 15–35?ms, mixture temperatures of 340–450?K, and equivalence ratios of 0.5–1 using capacitive spark-discharge ignition. The minimum equivalence ratio for ignition (MER), or the equivalence ratio at 50% probability, shows an inverse relationship with mixture temperature and residence time. Prior theory of real engine combustor performance for lean light off, proposed by Ballal and Lefebvre, was compared to the MER and displayed similar trends to the model. Spatially integrated OH* chemiluminescence was used to measure time to ignition within the reactor. Reduction in ignitibility was experienced as the time-to-ignition approached the residence time stressing the importance of device flow time scales in relation to kernel growth dynamics and ignition probability.  相似文献   

11.
The prospects of 2,5-dimethylfuran (DMF) as a bio-derived fuel that can be blended with gasoline are believed to be impressive. However, the effects of blending DMF on the key combustion parameters like the laminar burning velocity and ignition delay time of gasoline/air mixture need to be studied extensively for the successful implementation of the fuel mixture in spark ignition engines. Therefore, a skeletal chemical kinetic mechanism, comprising of 999 reactions among 218 species, has been developed in the present work for this purpose. The proposed chemical kinetic model has been validated against a wide range of experimental data for the laminar burning velocity and ignition delay time of isooctane (representing gasoline), DMF and their blends. It has been found from the present study that the thermal diffusivity of the unburnt gas mixture changes by a very small amount from the corresponding value for the pure isooctane/air mixture when DMF is added. Unlike isooctane, the DMF molecule does not consume H radicals during its primary breakup. Therefore, the maximum laminar burning velocity increases marginally when 50% DMF is blended with isooctane due to the increased presence of H radicals in the flame. The negative temperature coefficient behaviour in the ignition delay time of the isooctane fuel vanishes when 30% DMF (v/v) is blended to it.  相似文献   

12.
Microalloying additions of Ag (0.1 at.%) increase the hardening response of Al–Zn–Mg alloys to elevated temperature ageing in the range 100–200°C due to the formation of a high density of very fine η′ precipitate plates. The present study employed transmission electron microscopy (TEM) and three-dimension atom probe (3DAP) to study the early stages of ageing in the alloy Al–1.8Zn–3.4Mg–0.1Ag (at.%) in an attempt to identify the role of Ag in stimulating precipitation hardening. During isothermal ageing at 90°C, the hardening response is attributed to a high density of Zn–Mg–Ag rich solute clusters and GP zones. During ageing at 150°C, η′ precipitates nucleate at Zn–Mg–Ag rich solute clusters, the former growing as {111} platelets with an average composition of approximately 20 at.% Zn, 20 at.% Mg and 1.4 at.% Ag. The 3DAP data indicates that the co-segregation of Zn and Ag and subsequently Zn and Mg atoms precedes the formation of the Zn–Mg–Ag rich solute clusters. The GP zones and η′ precipitates were observed to possess a Zn:Mg ratio close to 1:1, whereas the equilibrium η precipitates possessed compositions consistent with MgZn2. Furthermore, partitioning of Ag was observed inside all precipitate phases, viz. G.P. zones, η′ and η.  相似文献   

13.
杨谋  孟英峰  李皋  邓建民  张林  唐思洪 《物理学报》2013,62(7):79101-079101
本文基于井筒与地层间能量平衡原理, 将井筒钻井液划分成不同径向单元网格, 建立了考虑径向温度梯度条件下钻井液层间温度模型; 同时引入钻井液轴向导热项, 建立了钻井液轴向导热温度模型, 将数学模型应用隐式有限差分法离散与求解. 计算结果表明: 钻井液径向温度梯度对井筒径向与轴向温度产生的误差分别为0.15 ℃和0.2 ℃左右; 而钻井液轴向导热对井筒温度分布几乎不产生影响. 因此, 通过建立的数学模型进行系统分析表明, 在建立井筒-地层耦合瞬态传热模型时可忽略两者对井筒温度分布的影响. 基于数学建模方法验证了以前学者模型假设条件的正确性, 为油气井与地热井井下温度分布规律深入研究奠定了可靠的理论基础. 关键词: 径向温度梯度 轴向导热 井筒温度 瞬态传热模型  相似文献   

14.
The mechanism of magnetic field effect on OH density distribution in a methane-air premixed jet flame was investigated by means of PLIF measurement and numerical simulation. In the experiment, magnetically induced change in the OH density profile in the flame in a N2 atmosphere was much smaller than that in air (mixture of 80% N2 and 20% O2), and such a phenomenon was qualitatively reproduced by solving the equations for reactive gas dynamics and magnetism in the numerical simulation. Here, N2 is diamagnetic and little affected by the magnetic field, while O2 is paramagnetic and influenced due to the magnetic field. This provided the experimental and numerical verification for the mechanism of the magnetic field effect suggested in our previous study. That is, the magnetic force does not directly and selectively induce the change in the diffusion velocity of OH itself. Alternatively, the magnetic force acting on O2 in the surrounding air, whose mass density and magnetic susceptibility are much larger than that of other chemical species in the flame, causes the change in the convection velocity of the gas mixture and displaces the OH density distribution indirectly and passively. In other words, the most important cause of the OH density change is not the diffusion of OH, but the convection of air containing a large amount of O2. Furthermore, by careful examination of the magnetic field effect on the flame in the N2 atmosphere, it was found out that the magnetic force does not only act on O2 in the surrounding air, but also on O2 in the premixed gas injected from the burner.  相似文献   

15.
A simple new model of the spatial distribution of the liquid temperature near a cavitation bubble wall (Tli) is employed to numerically calculate Tli. The result shows that Tli is almost same with the ambient liquid temperature (T0) during the bubble oscillations except at strong collapse. At strong collapse, Tli can increase to about 1510 K, the same order of magnitude with that of the maximum temperature inside the bubble, which means that the chemical reactions occur not only in gas-phase inside the collapsing bubble but also in liquid-phase just outside the collapsing bubble. Four factors (ultrasonic vibration amplitude, ultrasonic frequency, the surface tension and the viscosity) are considered to study their effects for the thin liquid layer. The results show that for the thin layer, the thickness and the temperature increase as the ultrasonic vibration amplitude rise; conversely, the thickness and the temperature decrease with the increase of the ultrasonic frequency, the surface tension or the viscosity.  相似文献   

16.
We have conducted experimental and numerical studies on flame synthesis of carbon nanotubes (CNTs) to investigate the effects of three key parameters – selective catalyst, temperature and available carbon sources – on CNT growth. Two different substrates were used to synthesize CNTs: Ni-alloy wire substrates to obtain curved and entangled CNTs and Si-substrates with porous anodic aluminum oxide (AAO) nanotemplates to grow well-aligned, self-assembled and size-controllable CNTs, each using two different types of laminar flames, co-flow and counter-flow methane–air diffusion flames. An appropriate temperature range in the synthesis region is essential for CNTs to grow on the substrates. Possible carbon sources for CNT growth were found to be the major species CO and those intermediate species C2H2, C2H4, C2H6, and methyl radical CH3. The major species H2, CO2 and H2O in the synthesis region are expected to activate the catalyst and help to promote catalyst reaction.  相似文献   

17.
采用有限元方法数值模拟在连续激光辐照下旋转柱壳温度场的变化和分布情况,并分析了热性能参数对温度场造成的影响,同时还比较分析了不同旋转频率对柱壳温度场分布的影响。结果表明,激光作用下旋转柱壳的温升大大低于静止柱壳的温升, 外表面温度呈现出与旋转频率相符的周期性上升过程,而内表面温升由于热传导的原因在较小频率下才表现出这种周期性,当频率增大到一定值时,内表面温升不出现周期性的台阶而是曲线上升。  相似文献   

18.
The effect of pressure on the Diels–Alder reaction was examined in room temperature ionic liquids, followed by high‐pressure FT‐IR spectroscopy using pressures up to 150 MPa. Pressure enhances the kinetic sensitivity of the reaction. The kinetic effect of fluorophobic interactions was examined using ionic liquids with fluorous cations. Ionic liquids in combination with ZnI2 as a Lewis acid catalyst were also studied under high pressure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
温度对金属纳米线势能分布的影响   总被引:3,自引:0,他引:3  
采用三维分子动力学模拟方法,以面心立方金属银为研究对象,基于Finnis-Sinclair型嵌入原子法(EAM)多体势,模拟研究了纳米线势能分布特征在常温下及其在不同温度直到熔化过程中的变化,给出了常温及不同温度银纳米线势能分布比例和势能分布函数.结果表明:常温下,纳米线高势能原子比例随纳米线横截面尺寸的减小而增大,势能分布函数曲线各峰位几乎与纳米线横截面尺寸无关;纳米线熔化前的势能分布函数曲线具有多个波峰,随着温度增加,峰数减少且峰位右移;熔化后,多峰特征消失,只有一个宽化的峰.  相似文献   

20.
It was found that when electrolessly deposited thin Pd and Pd–Cu membranes were exposed to air at temperatures above 350 °C, their H2 flux increased substantially immediately after the air exposure, then decreased to a new steady-state value. While this was a quasi-reversible change for the H2 flux, the flux of insoluble species, such as N2, irreversibly increased with every air exposure but by a much smaller extent. The extent of these changes was found to be dependent on the exposure time and the temperature of the tests. Thus, we decided to investigate the effect of gas exposures on the properties of these materials.

Palladium and palladium–copper films, prepared by electroless deposition on ceramic supports, and commercial foils were exposed to air, hydrogen and helium at 500 and 900 °C for times varying from 1 h to 1 week with the objective of determining the effect of the different exposure conditions on the surface morphology, the flux of different penetrants and the crystalline structure of the materials. Atomic force microscopy (AFM) and X-ray diffraction (XRD) were used to study the changes occurring in the films under those conditions.

It was observed that the exposure of both the electroless films and the foils to hydrogen and air markedly modified their surface morphology. The hydrogen exposure tended to smooth the surface features whereas the oxygen exposure created new surface features such holes and large peaks. Additionally it was found that the air exposure produced some oxidation of the film to create PdO.

These results suggested that a common hypothesis stating that air oxidation just cleans the surface of the membrane might not be sufficient to explain all of those changes. A contributing effect of air exposure may be the increase in surface area due to the formation of palladium oxide. However, the extent of the surface area increase was insufficient to explain the increase in steady-state H2 flux.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号