首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
大气棕碳(BrC)是对大气颗粒物中具有吸光能力的一类有机物的总称,其对空气能见度及气候系统均有重要影响.自2021年3月至2022年2月底于南京北郊利用黑碳仪测定了气溶胶中BrC的光吸收系数,利用最小相关性法分别定量一次(BrCpri)和二次棕碳(BrCsec)贡献,结合后向轨迹、潜在来源和日均变化,分析季节变化特征.结果表明,观测期间BrC的平均光吸收系数(370 nm)为(7.76±7.17)Mm-1,对于总气溶胶光吸收贡献率为(22.0±8.8)%.不同波长下棕碳吸光系数在四季呈现U字形变化,即春季和冬季高,夏季和秋季低.BrCpri和BrCsec(370 nm)全年光吸收贡献分别为(62.9±21.4)%和(37.1±21.4)%;前者在四季均占主导,但随着波长增加,BrCsec的贡献逐渐增加并最终占主导(如在660 nm时).除冬季以外,BrC在其他季节受到来自海上气团的显著影响,而冬季受当地及周边地区排放影响更为显著.交通排放在春、夏和秋季对一...  相似文献   

2.
尚玥  余欢  茅宇豪  王成  谢鸣捷 《环境科学》2021,42(3):1228-1235
对南京北郊2018年9月~2019年9月PM2.5中有机组分的吸光性质进行了研究,并利用PM2.5化学组成及主成分分析法分析该地区吸光性有机碳(棕碳,brown carbon,BrC)的主要来源.结果表明,水溶性有机碳(water-soluble organic carbon,WSOC)和甲醇可提取有机碳(methanol extractable organic carbon,MEOC)在365 nm处光吸收系数(Abs365,w和Abs365,m)的平均值分别为(3.22±2.18)Mm-1和(7.69±4.93)Mm-1.Abs365,w和Abs365,m分别与WSOC(r=0.72,P<0.01)和MEOC(r=0.62,P=0.04)的质量浓度显著相关,均表现为冬高夏低,夜高昼低的时间变化特征.这可归结于冬季和夜间的气象特征(例如边界层高度降低和大气稳定度升高)、冬季一次源排放的增加以及夏季和白天更强的"光漂白作用".Abs365,m/Abs365,w的年均值(2.60±0.92)远高于MEOC/WSOC(质量浓度比值,1.37±0.30),表明MEOC中非水溶性组分的吸光作用更强,在BrC的吸光作用中占主导地位.WSOC、MEOC、Abs365,m和K+均未表现出强相关性(r<0.60),因此生物质燃烧不是该地区BrC的主要一次来源.WSOC和MEOC质量吸收效率(MAE365,w和MAE365,m)及其比值(MAE365,m/MAE365,w)的季节变化和Abs365相同.MEOC中非水溶性组分的MAE365[(4.10±5.15)m2·g-1]分别是MAE365,w和MAE365,m的6.0和2.9倍,支持BrC的吸光作用受非水溶性有机组分主导这一推断.和WSOC的埃氏吸收指数(ÅWSOC)相比,MEOC的埃氏吸收指数(ÅMEOC)随时间变化更显著,这可能与非水溶性吸光组分排放的季节变化有关.主成分分析结果显示,本研究PM2.5中有机组分的吸光作用主要来源于二次形成过程和人为活动相关的一次排放,而不是生物质燃烧.  相似文献   

3.
西安市大气棕碳污染特性及发色团种类   总被引:2,自引:2,他引:0  
陈前  陈庆彩 《环境科学》2021,42(3):1236-1244
为探究西安市大气棕碳(BrC)的光学特性及化学组成,利用大气颗粒物采样器和吸附剂同时采集了颗粒相和气相大气样品,并运用紫外-可见分光光度计和三维荧光光度计测定了样品中BrC的吸光和荧光特性,基于平行因子分析(PARAFAC)法解析三维荧光光谱得到BrC的种类和组成信息.结果表明,在波长为365 nm时,颗粒相和气相Br...  相似文献   

4.
深圳南头半岛冬季大气中PAHs 的分布特征与来源   总被引:8,自引:2,他引:8       下载免费PDF全文
对深圳市南头半岛冬季期间大气中的多环芳烃(PAHs)进行了为期2 个月的连续观测.结果表明,PAHs 主要以气态化合物为主,其中菲的含量最高,气态和固态PAHs 的平均含量分别为99.3, 26.4ng/m3.气象条件的变化对大气PAHs 影响显著,灰霾期大气中PAHs 含量的高值源于无风、干燥气象条件下形成的逆温效应,而降雨可有效去除固态PAHs.采用因子分析与特征化合物比值法对大气中PAHs 的来源与贡献率进行了研究,大气中PAHs 主要来源为机动车尾气排放、燃煤发电和垃圾焚烧发电,其贡献率分别为50.0%、29.4%和20.6%.  相似文献   

5.
为探讨长三角背景点有机气溶胶的污染特征和来源,于2018年夏季在崇明岛进行了为期3个月的PM2.5样品昼夜采集,使用气相色谱-质谱技术分析其中正构烷烃(normal alkanes,n-alkanes)和多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的质量浓度和分子组成,并结合后向轨迹和正交矩阵(positive matrix factorization,PMF)解析其来源.结果表明,观测期间崇明岛PM2.5的质量浓度为(33±21)μg·m-3,低于国家空气质量一级标准(GB3095-2012,35μg·m-3),但仍有部分时段污染较重,超标率为35%.其中n-alkanes和PAHs的浓度均值分别为(26±44) ng·m-3和(0. 76±1. 0) ng·m-3,污染期(PM2.5≥35μg·m-3)比清洁期(PM2.5<15μg·m  相似文献   

6.
本研究使用大气被动采样器(PAS-PUF)和干沉降被动采样器(PAS-DD),分别于2016年采暖期和2017年非采暖期对新疆博斯腾湖流域及周边地区15种USEPA优控多环芳烃(PAHs)大气浓度和干沉降进行了观测,并对其污染特征和来源进行了研究.结果表明,采暖期和非采暖期博斯腾湖流域PAHs大气浓度范围分别为6. 38~245. 43 ng·m~(-3)和2. 33~74. 76ng·m~(-3);采暖期与非采暖期均呈现出居民区湖泊周边塔中的空间分布.采暖期和非采暖期PAHs大气干沉降通量范围分别为0. 45~18. 10μg·(m~2·d)-1和0. 25~8. 15μg·(m~2·d)-1;采暖期居民区PAHs干沉降通量比湖泊周边和塔中采样点高,但在非采暖期塔中采样点高于其它采样点.整体而言,博斯腾湖流域大气及干沉降中PAHs在采暖期显著高于非采暖期,在采暖期与非采暖期均以菲(Phe)、芴(Flu)、荧蒽(Flua)和芘(Pyr)等3~4环PAHs为主.比值法源解析结果显示,博斯腾湖流域大气和干沉降中PAHs主要来源于煤炭和生物质燃烧; HYSPLIT前向和后向轨迹模拟结果表明,非采暖期居民区较高PAHs排放通过大气传输到达博斯腾湖区,经大气干沉降进入水体,可能会对博斯腾湖水生环境造成影响.  相似文献   

7.
采集津冀辽地区典型3湖库(于桥水库、衡水湖和大伙房水库)表层沉积物样品共29个,利用GC-MS检测了16种多环芳烃含量.结果 表明,沉积物中∑ PAHs (ng·g-1)分别是337.3 ~1604.1(均值820.0)、461.1 ~1497.5(均值932.3)和102.3 ~2240.5(均值564.9).与国内...  相似文献   

8.
为研究城郊地区不同土地利用类型土壤多环芳烃(PAHs)的纵向污染特征,对南京市郊菜地、林地、居民点、城镇用地、水田和工业区这6个不同土地利用类型土壤各1剖面(0~100 cm)的15种优控PAHs进行研究,分析了PAHs的纵向分布和组成特征、影响因素和来源.结果表明,6个采样点剖面∑15PAHs含量分别为:菜地69.3~299.2μg·kg-1、林地20.8~128.3μg·kg-1、居民点30.7~142.1μg·kg-1、城镇用地185.6~1 728.7μg·kg-1、水田208.3~693.0μg·kg-1和工业区165.6~739.2μg·kg-1.居民点和林地没有污染,菜地污染水平较轻,水田和工业区污染水平中等,城镇用地污染较严重.除居民点和城镇用地以外的采样点土壤PAHs集中分布在表层或次表层,但在深层仍有检出,且各采样点各深度大多以高环PAHs为主. PAHs的分子特性及成分含量、土壤的理化性质和土地利用方式均会影响P...  相似文献   

9.
为研究聊城市冬季PM_(2. 5)中多环芳烃(PAHs)的浓度水平、来源及健康效应,于2017年1~2月对聊城市PM_(2. 5)中的14种PAHs进行分析,利用特征比值法和PCA-MLR模型对其来源及贡献率进行解析,并利用Ba P当量浓度(Ba Peq)和呼吸途径暴露PAHs引发癌症的风险(ILCR)模型进行健康风险评估.结果表明,聊城市冬季PM_(2. 5)中PAHs的平均质量浓度为(64. 89±48. 23) ng·m~(-3),其中Fla、Pyr和Chry的浓度最高,占比分别为15. 5%、12. 8%和12. 7%,且4环PAHs总质量浓度占比最高,春节前与烟火Ⅱ期比其他时期污染较重. PCA-MLR模型分析结果表明,聊城市冬季PM_(2. 5)中PAHs来源主要包括煤炭燃烧、生物质燃烧和机动车尾气.聊城市冬季TEQ平均值为(6. 37±4. 92) ng·m~(-3),ILCR模型评估结果表明,成人的ILCR值高于儿童,二者的ILCR值均处于风险阈值内(10-6~10-4),表明聊城市冬季PM_(2. 5)具有潜在致癌风险.  相似文献   

10.
廊坊市是北京市及周边传输通道“2+26”城市之一.为研究廊坊市开发区冬季颗粒物中碳组分污染特征,于2018年1月5日—2月5日在廊坊市开发区国控点位同步开展PM2.5及PM10样品采集,使用DRI分析OC(有机碳)与EC(元素碳)的质量浓度.结果表明:廊坊开发区冬季ρ(PM2.5)、ρ(PM10)分别为(54.5±46.0)(91.0±58.2)μg/m3.PM2.5中ρ(OC)、ρ(EC)分别为14.64、3.54 μg/m3,PM10中分别为17.07、4.58 μg/m3;PM2.5、PM10中ρ(OC)与ρ(EC)相关性均较好,R2均为0.91(P < 0.01),表明二者具有相似的来源;在PM2.5和PM10中OC/EC〔ρ(OC)/ρ(EC),下同〕分别为4.46和4.16,ρ(SOC)(SOC为二次有机碳)分别为6.15和5.88 μg/m3,分别占ρ(OC)的42.1%和37.7%,表明二次污染较严重.碳组分丰度及主成分分析结果表明,PM2.5与PM10中碳组分来源基本一致,主要来源于汽车尾气、水溶性极性化合物、生物质燃烧及燃煤的混合源,柴油车排放,以及道路扬尘.后向气流轨迹聚类结果表明,颗粒物及碳组分质量浓度受途径内蒙古自治区及河北省中部、北京市南部气团的影响较大;对于碳组分来源,道路扬尘及汽车尾气受气团传输的影响较大,而生物质燃烧、燃煤等受气团传输的影响较小.研究显示,汽车尾气、燃烧源及道路扬尘为廊坊市开发区冬季碳组分的主要来源.   相似文献   

11.
2002-10~2005-11采集珠江三角洲典型区域(东莞市、惠州市、中山市、珠海市和佛山市顺德区)的农业土壤表层样品260个,运用气相色谱-质谱方法对美国EPA优控的16种多环芳烃(PAHs)进行分析测定.结果显示,研究区农业土壤中16种PAHs含量范围在3.3~4 079.0 ng·g-1,平均含量244.2 ng·g-1,以3环和4环的PAHs为主;中心城区土壤中PAHs含量高于远郊区,菜地>水稻田>香蕉地>旱坡地果园地>甘蔗地.依据荧蒽/芘及2+3环与4环以上PAHs化合物分布特点,表明该区域农业土壤中PAHs主要来源于化石燃料的不完全燃烧.通过与国内外土壤中PAHs含量的对比,研究区的农业土壤受到一定程度的PAHs污染,含量处于中等水平.  相似文献   

12.
利用某废弃焦化场地内6眼深层采样孔,样品最大采集深度9. 5~42 m不等,分析包气带剖面上16种PAHs分布特征、污染来源以及影响迁移的因素.结果表明,各钻孔ΣPAHs最大含量介于134. 79~11 266. 81 mg·kg-1之间,主要分布层位为地表以下1~5 m,含量以低环(2+3环)为主,单体以萘含量最高.场地污染主要来自于煤的燃烧源.焦油、沥青及其深加工产物的污染对场地ΣPAHs含量起控制作用.包气带砂卵砾石层作为污染物良好的下渗通道,砂层透镜体通过吸附及截留作用成为PAHs的主要富集层.化产区排放或泄漏的各类油液通过混溶、竞争性吸附等作用增强了PAHs垂向迁移能力,并致使深部包气带受到污染.地表0~1 m土壤受人为扰动、降雨淋滤、降解作用,30 m以下岩层受到地下水溶滤作用,导致低环/高环比例随深度增加呈现先升高后降低的趋势.污染来源、包气带理化指标及水文地质条件等共同作用控制PAHs垂向分布及迁移.  相似文献   

13.
研究了长江攀枝花、宜宾、泸州、重庆、涪陵、三峡、岳阳、武汉、九江和南京共计10个重点江段枯水期和丰水期表层水中19种多环芳烃(PAHs)及其15种衍生物(SPAHs)的分布和来源,评估了长江PAHs类污染的健康风险及时空差异.结果表明,长江表层水中∑PAHs、∑SPAHs平均浓度分别为(147.3±59.8)、(73.2±29.7) ng·L-1,检出率分别为82.9%、69.5%,其中2~3环(S)PAHs所占比例为79%.在SPAHs中,∑NPAHs(硝基取代PAHs)、∑MPAHs(甲基取代PAHs)、∑OPAHs(氧化PAHs)的平均浓度分别为(27.0±4.5)、(24.7±15.5)、(17.1±11.9) ng·L-1.根据分子比值法及主成分分析可知,长江重点江段PAHs主要来源于生物质、化石及液体燃料燃烧,SPAHs主要来源于燃烧源和光化学转化,SPAHs及PAHs通过大气沉降汇入水体.采用毒性当量因子浓度计算对长江重点江段PAHs进行健康风险评估,结果表明在枯水期具有致癌性PAHs的∑TEQBaP值(苯并芘毒性当量)较高,其中岳阳、武汉江段的BaP毒性当量浓度高于我国地表水规定阈值,应当高度重视长江流域PAHs在枯水期引起的健康风险.  相似文献   

14.
董磊  汤显强  林莉  郦超  黎睿  吴敏 《环境科学》2018,39(6):2588-2599
持久性有机污染物(POPs)在我国地表水和沉积物等环境介质中被广泛检出,对生态环境和人类健康具有潜在的风险.针对现阶段长江经济带核心区域(武汉段)POPs的污染状况信息严重缺乏的问题,本文以使用量较大且环境中检出高的PAHs和PAEs为研究对象,通过对2016年长江武汉段干流15个采样点丰水期水体和沉积物中16种PAHs和6种PAEs污染物含量水平、分布特征和污染来源的系统分析.结果表明,长江武汉段2016年丰水期水体和沉积物中ΣPAHs浓度分别为20.8~90.4 ng·L~(-1)(均值40.7 ng·L~(-1))和46.1~424.0 ng·g~(-1)(均值191.8 ng·g~(-1)),ΣPAEs浓度分别为280.9~779.0 ng·L~(-1)(均值538.6 ng·L~(-1))和1 346.2~7 641.1 ng·g~(-1)(均值3 699.5 ng·g~(-1)).PAHs和PAEs含量均低于国家地表水环境质量标准规定的限值,污染程度小.长江武汉段水体中PAHs以2~3环为主,沉积物中PAHs以2~3环和4环为主,水体和沉积物中PAEs以DEHP和DBP为主.基于比率及主成分分析,长江武汉段水体与沉积物中PAHs主要的来源为煤和生物质燃烧,以及石油来源;水体和沉积物中PAEs的主要来源于塑料和重化工工业,以及生活垃圾.水体及沉积物中两类典型POPs(PAHs和PAEs)对人类健康会产生潜在有害影响,需加强监控.研究成果可为长江(武汉段)环境保护提供基础数据和技术支撑.  相似文献   

15.
长江下游支流水体中多环芳烃的分布及生态风险评估   总被引:5,自引:4,他引:1  
长江下游地区是我国一个典型的化学工业园区聚集地,化工园区企业生产过程中产生和排放的多环芳烃通过大气沉降、地表径流等方式进入支流水体,并最终汇入长江.本研究选择了典型的支流水体,开展了多环芳烃的分布特征、源解析和生态风险评估研究.结果表明多环芳烃单体以低环为主,总浓度为37.27~285.88 ng·L-1,平均值为78.31 ng·L-1.PAHs单体浓度范围0~61.35 ng·L-1,检出率最低单体为苯并[k]荧蒽和苯并[a]芘,其检出率均为75%.苯并[a]芘是毒性当量因子最大的PAHs,其浓度范围为0~11.08 ng·L-1.根据我国《生活饮用水水源水质标准》(CJ 3020-1993)规定,饮用水中苯并[a]芘的限值为10 ng·L-1,其中研究区域内无锡市的一个水样(S12)中浓度超出了标准限值,长江下游支流水体的PAHs浓度总体处于低至中等的污染水平.根据比值法和主成分分析的源解析结果,水体中多环芳烃主要受化工排放、汽车尾气的影响,还有部分来自燃煤.生态风险评估...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号