首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Zinser ER  Schneider D  Blot M  Kolter R 《Genetics》2003,164(4):1271-1277
The loss of preexisting genes or gene activities during evolution is a major mechanism of ecological specialization. Evolutionary processes that can account for gene loss or inactivation have so far been restricted to one of two mechanisms: direct selection for the loss of gene activities that are disadvantageous under the conditions of selection (i.e., antagonistic pleiotropy) and selection-independent genetic drift of neutral (or nearly neutral) mutations (i.e., mutation accumulation). In this study we demonstrate with an evolved strain of Escherichia coli that a third, distinct mechanism exists by which gene activities can be lost. This selection-dependent mechanism involves the expropriation of one gene's upstream regulatory element by a second gene via a homologous recombination event. Resulting from this genetic exchange is the activation of the second gene and a concomitant inactivation of the first gene. This gene-for-gene expression tradeoff provides a net fitness gain, even if the forfeited activity of the first gene can play a positive role in fitness under the conditions of selection.  相似文献   

3.
Theoretical studies have suggested that the evolution of habitat (host) races, regarded as a prelude to sympatric speciation, requires strong trade-offs in adaptation to different habitats: alleles that improve fitness in some habitats and have deleterious effects of similar magnitude in other habitats must be segregating in the population. I argue that such trade-offs are not necessary; the evolution of habitat races can also be driven by genetic variation due to loci that affect fitness in one habitat and are neutral or nearly so in others, that is, when performance in different habitats is genetically independent. One source of such genetic variation are deleterious mutations with habitat-specific fitness effects. I use deterministic two-locus and multilocus models to show that the presence of such mutations in the gene pool results in indirect selection favoring habitat fidelity or habitat preference over acceptance of both suitable habitats. This leads to the evolution of largely genetically isolated populations that use different habitats, from a single panmictic population of individuals accepting both habitats. This study suggests that the conditions favoring habitat race formation, and thus possibly sympatric speciation, are much less stringent than previously thought.  相似文献   

4.
Micromutational models of adaptation have placed considerable weight on antagonistic pleiotropy as a mechanism that prevents mutations of large effect from achieving fixation. However, there are few empirical studies of the distribution of pleiotropic effects, and no studies that have examined this distribution for a large number of adaptive mutations. Here we examine the form and extent of pleiotropy associated with beneficial mutations in Escherichia coli. To do so, we used a collection of independently evolved genotypes, each of which contains a beneficial mutation that confers increased fitness in a glucose-limited environment. To determine the pleiotropic effects of these mutations, we examined the fitnesses of the mutants in five novel resource environments. Our results show that the majority of mutations had significant fitness effects in alternative resources, such that pleiotropy was common. The predominant form of this pleiotropy was positive--that is, most mutations that conferred increased fitness in glucose also conferred increased fitness in novel resources. We did detect some deleterious pleiotropic effects, but they were primarily limited to one of the five resources, and within this resource, to only a subset of mutants. Although pleiotropic effects were generally positive, fitness levels were lower and more variable on resources that differed most in their mechanisms of uptake and catabolism from that of glucose. Positive pleiotropic effects were strongly correlated in magnitude with their direct effects, but no such correlation was found among mutants with deleterious pleiotropic effects. Whereas previous studies of populations evolved on glucose for longer periods of time showed consistent declines on some of the resources used here, our results suggest that deleterious pleiotropic effects were limited to only a subset of the beneficial mutations available.  相似文献   

5.
Adaptation of one set of traits is often accompanied by attenuation of traits important in other selective environments, leading to fitness trade‐offs. The mechanisms that either promote or prevent the emergence of trade‐offs remain largely unknown, and are difficult to discern in most systems. Here, we investigate the basis of trade‐offs that emerged during experimental evolution of Methylobacterium extorquens AM1 to distinct growth substrates. After 1500 generations of adaptation to a multi‐carbon substrate, succinate (S), many lineages had lost the ability to use one‐carbon compounds such as methanol (M), generating a mixture of M+ and M? evolved phenotypes. We show that trade‐offs in M? strains consistently arise via antagonistic pleiotropy through recurrent selection for loss‐of‐function mutations to ftfL (formate‐tetrahydrofolate ligase), which improved growth on S while simultaneously eliminating growth on M. But if loss of FtfL was beneficial, why were M trade‐offs not found in all populations? We discovered that eliminating FtfL was not universally beneficial on S, as it was neutral or even deleterious in certain evolved lineages that remained M+. This suggests that sign epistasis with earlier arising mutations prevented the emergence of mutations that drove trade‐offs through antagonistic pleiotropy, limiting the evolution of metabolic specialists in some populations.  相似文献   

6.
Jiang X  Xu Z  Li J  Shi Y  Wu W  Tao S 《PloS one》2011,6(11):e27757
We study the dynamics of adaptation in asexual populations that undergo both beneficial and deleterious mutations. In particular, how the deleterious mutations affect the fixation of beneficial mutations was investigated. Using extensive Monte Carlo simulations, we find that in the "strong-selection weak mutation (SSWM)" regime or in the "clonal interference (CI)" regime, deleterious mutations rarely influence the distribution of "selection coefficients of the fixed mutations (SCFM)"; while in the "multiple mutations" regime, the accumulation of deleterious mutations would lead to a decrease in fitness significantly. We conclude that the effects of deleterious mutations on adaptation depend largely on the supply of beneficial mutations. And interestingly, the lowest adaptation rate occurs for a moderate value of selection coefficient of deleterious mutations.  相似文献   

7.
We investigate the impact of antagonistic pleiotropy on the most widely used methods of estimation of the average coefficient of dominance of deleterious mutations from segregating populations. A proportion of the deleterious mutations affecting a given studied fitness component are assumed to have an advantageous effect on another one, generating overdominance on global fitness. Using diffusion approximations and transition matrix methods, we obtain the distribution of gene frequencies for nonpleiotropic and pleiotropic mutations in populations at the mutation-selection-drift balance. From these distributions we build homozygous and heterozygous chromosomes and assess the behavior of the estimators of dominance. A very small number of deleterious mutations with antagonistic pleiotropy produces substantial increases on the estimate of the average degree of dominance of mutations affecting the fitness component under study. For example, estimates are increased three- to fivefold when 2% of segregating loci are over-dominant for fitness. In contrast, strengthening pleiotropy, where pleiotropic effects are assumed to be also deleterious, has little effect on the estimates of the average degree of dominance, supporting previous results. The antagonistic pleiotropy model considered, applied under mutational parameters described in the literature, produces patterns for the distribution of chromosomal viabilities, levels of genetic variance, and homozygous mutation load generally consistent with those observed empirically for viability in Drosophila melanogaster.  相似文献   

8.
Two genetic models exist to explain the evolution of ageing – mutation accumulation (MA) and antagonistic pleiotropy (AP). Under MA, a reduced intensity of selection with age results in accumulation of late‐acting deleterious mutations. Under AP, late‐acting deleterious mutations accumulate because they confer beneficial effects early in life. Recent studies suggest that the mitochondrial genome is a major player in ageing. It therefore seems plausible that the MA and AP models will be relevant to genomes within the cytoplasm. This possibility has not been considered previously. We explore whether patterns of covariation between fitness and ageing across 25 cytoplasmic lines, sampled from a population of Drosophila melanogaster, are consistent with the genetic associations predicted under MA or AP. We find negative covariation for fitness and the rate of ageing, and positive covariation for fitness and lifespan. Notably, the direction of these associations is opposite to that typically predicted under AP.  相似文献   

9.
In populations with males and females, sexual selection may often represent a major component of overall selection. Sexual selection could act to eliminate deleterious alleles in concert with other forms of selection, thereby improving the fitness of sexual populations. Alternatively, the divergent reproductive strategies of the sexes could promote the maintenance of sexually antagonistic variation, causing sexual populations to be less fit. The net impact of sexual selection on fitness is not well understood, due in part to limited data on the sex‐specific effects of spontaneous mutations on total fitness. Using a set of mutation accumulation lines of Drosophila melanogaster, we found that mutations were deleterious in both sexes and had larger effects on fitness in males than in females. This pattern is expected to reduce the mutation load of sexual females and promote the maintenance of sexual reproduction.  相似文献   

10.
Hill JA  Otto SP 《Genetics》2007,175(3):1419-1427
In facultatively sexual species, lineages that reproduce asexually for a period of time can accumulate mutations that reduce their ability to undergo sexual reproduction when sex is favorable. We propagated Saccharomyces cerevisiae asexually for approximately 800 generations, after which we measured the change in sexual fitness, measured as the proportion of asci observed in sporulation medium. The sporulation rate in cultures propagated asexually at small population size declined by 8%, on average, over this time period, indicating that the majority of mutations that affect sporulation rate are deleterious. Interestingly, the sporulation rate in cultures propagated asexually at large population size improved by 11%, on average, indicating that selection on asexual function effectively eliminated most of the mutations deleterious to sporulation ability. These results suggest that pleiotropy between mutations' effects on asexual fitness and sexual fitness was predominantly positive, at least for the mutations accumulated in this experimental evolution study. A positive correlation between growth rate and sporulation rate among lines also provided evidence for positive pleiotropy. These results demonstrate that, at least under certain circumstances, selection acting on asexual fitness can help to maintain sexual function.  相似文献   

11.
Experimental adaptation of Drosophila melanogaster to nutrient-deficient starch-based (S) medium resulted in lifespan shortening, increased early-life fecundity, accelerated reproductive aging, and sexually dimorphic survival curves. The direction of all these evolutionary changes coincides with the direction of phenotypic plasticity observed in non-adapted flies cultured on S medium. High adult mortality rate caused by unfavorable growth medium apparently was the main factor of selection during the evolutionary experiment. The results are partially compatible with Williams’ hypothesis, which states that increased mortality rate should result in relaxed selection against mutations that decrease fitness late in life, and thus promote the evolution of shorter lifespan and earlier reproduction. However, our results do not confirm Williams’ prediction that the sex with higher mortality rate should undergo more rapid aging: lifespan shortening by S medium is more pronounced in naive males than females, but it was female lifespan that decreased more in the course of adaptation. These data, as well as the results of testing of F1 hybrids between adapted and control lineages, are compatible with the idea that the genetic basis of longevity is different in the two sexes, and that evolutionary response to increased mortality rate depends on the degree to which the mortality is selective. Selective mortality can result in the development of longer (rather than shorter) lifespan in the course of evolution. The results also imply that antagonistic pleiotropy of alleles, which increase early-life fecundity at the cost of accelerated aging, played an important role in the evolutionary changes of females in the experimental lineage, while accumulation of deleterious mutations with late-life effects due to drift was more important in the evolution of male traits.  相似文献   

12.
Evolution of late-life mortality in Drosophila melanogaster   总被引:2,自引:0,他引:2  
Abstract.— Aging appears to cease at late ages, when mortality rates roughly plateau in large-scale demographic studies. This anomalous plateau in late-life mortality has been explained theoretically in two ways: (1) as a strictly demographic result of heterogeneity in life-long robustness between individuals within cohorts, and (2) as an evolutionary result of the plateau in the force of natural selection after the end of reproduction. Here we test the latter theory using cohorts of Drosophila melanogaster cultured with different ages of reproduction for many generations. We show in two independent comparisons that populations that evolve with early truncation of reproduction exhibit earlier onset of mortality-rate plateaus, in conformity with evolutionary theory. In addition, we test two population genetic mechanisms that may be involved in the evolution of late-life mortality: mutation accumulation and antagonistic pleiotropy. We test mutation accumulation by crossing genetically divergent, yet demographically identical, populations, testing for hybrid vigor between the hybrid and nonhybrid parental populations. We found no difference between the hybrid and nonhybrid populations in late-life mortality rates, a result that does not support mutation accumulation as a genetic mechanism for late-life mortality, assuming mutations act recessively. Finally, we test antagonistic pleiotropy by returning replicate populations to a much earlier age of last reproduction for a short evolutionary time, testing for a rapid indirect response of late-life mortality rates. The positive results from this test support antagonistic pleiotropy as a genetic mechanism for the evolution of late-life mortality. Together these experiments comprise the first corroborations of the evolutionary theory of late-life mortality.  相似文献   

13.
If gene flow occurs through both sexes but only females contribute to population growth, adaptation to marginal (sink) habitats should be differentially affected by male versus female dispersal. Here I address this problem with two models. First, I consider the fate of a rare allele that improves fitness in the marginal habitat but reduces fitness in the core (source) habitat. Then I study the evolution of a polygenic character mediating a trade-off in fitness between the habitats. Both approaches led to qualitatively similar predictions. The effect of a difference in the dispersal rate between the sexes depends on the degree to which immigration from the core habitat boosts the reproductive output from the marginal habitat. This boost is slight if the marginal habitat is able to sustain well a population without immigration. In that case, both female- and male-biased dispersal is more favorable for adaptation to marginal habitats than equal dispersal of both sexes (assuming that the dispersal rate averaged over the sexes is kept constant). In contrast, if the marginal habitat is an absolute sink unable to sustain a population without immigration, the conditions for adaptation to that habitat are least favorable under highly male-biased dispersal and most favorable under highly female-biased dispersal. Under some circumstances, high average (male+female) dispersal is more favorable than low dispersal. Thus, gene flow should not be seen solely as thwarting adaptation to marginal habitats. The results are interpreted in terms of how male and female dispersal affects the relative rate of gene flow from the source to the sink habitat and in the opposite direction. This study predicts that ecological niches of taxa with female-biased dispersal should tend to be broader and more evolutionarily flexible.  相似文献   

14.
Allopatric speciation is often assumed to occur as a consequence of adaptive divergence between two isolated populations. However, there are some scenarios in which reproductive isolation can be favored due to accumulated unconditionally deleterious mutations. If deleterious mutations have synergistic epistatic effects, it is shown here that the average fitness of recombinants between two parental lines with a given number of fixed mutations is lower than that of the parents in both the F1 and F2 generations. If individual mutations are only slightly deleterious, then they will tend to fixation at a high enough rate to cause lower hybrid fitness. If the fitness effects of mutation give rise to antagonistic epistasis, the hybrids tend to have a higher average fitness than the parental lines, suggesting a possible scenario for the origin of hybrid vigor. The other model of deleterious mutations investigated is the accumulation of knockout mutants in a duplicated gene family. While neutral in the parental lines, upon contact the F1 and later generations have a significant probability of carrying double knockouts. Under this scenario, selection may also favor reproductive isolation between the two lines. Even when the selection coefficients generated are too low to drive speciation, epistatic interactions between deleterious mutations offer a possible explanation for both outbreeding depression and hybrid vigor.  相似文献   

15.
The fitness effect of mutations can be influenced by their interactions with the environment, other mutations, or both. Previously, we constructed 32 ( = 25) genotypes that comprise all possible combinations of the first five beneficial mutations to fix in a laboratory-evolved population of Escherichia coli. We found that (i) all five mutations were beneficial for the background on which they occurred; (ii) interactions between mutations drove a diminishing returns type epistasis, whereby epistasis became increasingly antagonistic as the expected fitness of a genotype increased; and (iii) the adaptive landscape revealed by the mutation combinations was smooth, having a single global fitness peak. Here we examine how the environment influences epistasis by determining the interactions between the same mutations in two alternative environments, selected from among 1,920 screened environments, that produced the largest increase or decrease in fitness of the most derived genotype. Some general features of the interactions were consistent: mutations tended to remain beneficial and the overall pattern of epistasis was of diminishing returns. Other features depended on the environment; in particular, several mutations were deleterious when added to specific genotypes, indicating the presence of antagonistic interactions that were absent in the original selection environment. Antagonism was not caused by consistent pleiotropic effects of individual mutations but rather by changing interactions between mutations. Our results demonstrate that understanding adaptation in changing environments will require consideration of the combined effect of epistasis and pleiotropy across environments.  相似文献   

16.
Senescence, the decline in fitness components of an organism with age [1], is a nearly universal characteristic of living beings [2-6]. This ubiquity is challenging because natural selection does not favor the evolution of traits decreasing fitness [1, 7, 8]. Senescence may result from two nonexclusive mechanisms: the accumulation of deleterious mutations acting late in life, when the strength of natural selection against them declines [9-11] (mutation accumulation or MA hypothesis [12]) and the delayed cost of genes having beneficial effects early in life (antagonistic pleiotropy or AP hypothesis [13]). Few empirical studies have evaluated their contribution to the standing genetic variation in senescence. These studies focused on Drosophila and may be compromised by recent laboratory adaptation [14]. We here study genetic variation in aging patterns in snails (Physa acuta) freshly sampled in natural populations. Our results strongly support the MA theory by validating all its classical predictions, confirming previous results in Drosophila. We also report a striking, novel finding: interbreeding between natural populations alleviates the decline in survival with age. We provide new theoretical models showing this to be another consequence of MA. Our results offer interesting perspectives on how different populations may follow different genetic pathways to evolve senescence.  相似文献   

17.
The adaptive value of sexual reproduction is still debated in evolutionary theory. It has been proposed that the advantage of sexual reproduction over asexual reproduction is to promote genetic diversity, to prevent the accumulation of harmful mutations or to preserve heterozygosity. Since these hypothetical advantages depend on the type of asexual reproduction, understanding how selection affects the taxonomic distribution of each type could help us discriminate between existing hypotheses. Here, I argue that soft selection, competition among embryos or offspring in selection arenas prior to the hard selection of the adult phase, reduces loss of heterozygosity in certain types of asexual reproduction. Since loss of heterozygosity leads to the unmasking of recessive deleterious mutations in the progeny of asexual individuals, soft selection facilitates the evolution of these types of asexual reproduction. Using a population genetics model, I calculate how loss of heterozygosity affects fitness for different types of apomixis and automixis, and I show that soft selection significantly reduces loss of heterozygosity, hence increases fitness, in apomixis with suppression of the first meiotic division and in automixis with central fusion, the most common types of asexual reproduction. Therefore, if sexual reproduction evolved to preserve heterozygosity, soft selection should be associated with these types of asexual reproduction. I discuss the evidence for this prediction and how this and other observations on the distribution of different types of asexual reproduction in nature is consistent with the heterozygosity hypothesis.  相似文献   

18.
Mutations beneficial in one environment may cause costs in different environments, resulting in antagonistic pleiotropy. Here, we describe a novel form of antagonistic pleiotropy that operates even within the same environment, where benefits and deleterious effects exhibit themselves at different growth rates. The fitness of hfq mutations in Escherichia coli affecting the RNA chaperone involved in small-RNA regulation is remarkably sensitive to growth rate. E. coli populations evolving in chemostats under nutrient limitation acquired beneficial mutations in hfq during slow growth (0.1 h−1) but not in populations growing sixfold faster. Four identified hfq alleles from parallel populations were beneficial at 0.1 h−1 and deleterious at 0.6 h−1. The hfq mutations were beneficial, deleterious or neutral at an intermediate growth rate (0.5 h−1) and one changed from beneficial to deleterious within a 36 min difference in doubling time. The benefit of hfq mutations was due to the greater transport of limiting nutrient, which diminished at higher growth rates. The deleterious effects of hfq mutations at 0.6 h−1 were less clear, with decreased viability a contributing factor. The results demonstrate distinct pleiotropy characteristics in the alleles of the same gene, probably because the altered residues in Hfq affected the regulation of expression of different genes in distinct ways. In addition, these results point to a source of variation in experimental measurement of the selective advantage of a mutation; estimates of fitness need to consider variation in growth rate impacting on the magnitude of the benefit of mutations and on their fitness distributions.  相似文献   

19.
On the basis of single-locus models, spatial heterogeneity of the environment coupled with strong population regulation within each habitat (soft selection) is considered an important mechanism maintaining genetic variation. We studied the capacity of soft selection to maintain polygenic variation for a trait determined by several additive loci, selected in opposite directions in two habitats connected by dispersal. We found three main types of stable equilibria. Extreme equilibria are characterized by extreme specialization to one habitat and loss of polymorphism. They are analogous to monomorphic equilibria in singe-locus models and are favored by similar factors: high dispersal, weak selection, and low marginal average fitness of intermediate genotypes. At the remaining two types of equilibria the population mean is intermediate but variance is very different. At fully polymorphic equilibria all loci are polymorphic, whereas at low-variance equilibria at most one locus remains polymorphic. For most parameters only one type of equilibrium is stable; the transition between the domains of fully polymorphic and low-variance equilibria is typically sharp. Low-variance equilibria are favored by high marginal average fitness of intermediate genotypes, in contrast to single-locus models, in which marginal overdominance is particularly favorable for maintenance of polymorphism. The capacity of soft selection to maintain polygenic variation is thus more limited than extrapolation from single-locus models would suggest, in particular if dispersal is high and selection weak. This is because in a polygenic model, variance can evolve independently of the mean, whereas in the single-locus two-allele case, selection for an intermediate mean automatically leads to maintenance of polymorphism.  相似文献   

20.
Zhan J  McDonald BA 《Molecular ecology》2011,20(8):1689-1701
Genetic differentiation in thermal adaptation can result from a trade-off between the performance of organisms across different temperatures or from the accumulation of deleterious mutations. In this experiment, we assayed thermal sensitivity of 138 genetically distinct Mycosphaerella graminicola isolates sampled from five host populations in four locations under two temperature regimes (22 and 15 °C) and found significant differences in growth rate and response to temperature among populations. On average, genetic differentiation accounted for more than 50% of phenotypic variation in thermal adaptation while plasticity contributed less than a quarter of phenotypic variation. Populations originating from warm places performed better under the high-temperature regime and had a larger positive response to increasing temperature. Pairwise population differentiation (Q(ST) ) in temperature sensitivity, measured by taking the ratio of growth rates at 22 to 15 °C, was positively and significantly correlated to the pairwise difference in annual mean temperature at the collection sites. Because overall Q(ST) in temperature sensitivity was significantly higher than overall G(ST) in neutral restriction fragment length polymorphism loci, we believe that the primary mechanism underlying this thermal adaptation is antagonistic pleiotropy. Our results indicate that temperature sensitivity is a better indicator of thermal adaptation than growth rate at individual temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号