首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cognitive radio (CR) is a promising technology to improve spectrum utilization. Most of previous work on CR networks concentrates on maximizing transmission rate in the physical layer. However, the end-to-end transmission control protocol (TCP) performance perceived by secondary users is also a very important factor in CR networks. In this paper, we propose a novel multi-channel access scheme in CR networks, where the channel access is based on the TCP throughput in the transport layer. Specifically, we formulate the channel access process in CR network as a restless bandit system. With this stochastic optimization formulation, the optimal channel access policy is indexable, meaning that the channels with highest indices should be selected to transmit TCP traffic. In addition, we exploit cross-layer design methodology to improve TCP throughput, where modulation and coding at the physical layer and frame size at the data-link layer are considered together with TCP throughput in the transport layer to improve TCP performance. Simulation results show the effectiveness of the proposed scheme.  相似文献   

2.
Cognitive radio (CR) is a newly developed technology for increasing spectral efficiency in wireless communication systems. In the CR networks, there exist two traditional spectrum‐sharing technologies called spectrum overlay and spectrum underlay. A new hybrid overlay/underlay paradigm has also been discussed in the literature. In this work, we create a unified spectrum sensing and throughput analysis model, which is suitable for overlay, underlay, and hybrid overlay/underlay paradigms in the CR networks. In the proposed model, the energy detection scheme is employed for the spectrum sensing in the network in which the co‐channel interference is present among primary users and secondary users (SUs). The SUs' throughput in the proposed CR system model is then analyzed. The simulations are also carried out for demonstrating the performance of overlay, underlay, and hybrid overlay/underlay paradigms. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The fundamental features of cognitive radio (CR) systems are their ability to adapt to the wireless environment where they operate and their opportunistic occupation of the licensed spectrum bands assigned to the primary network. CR users in CR systems should not cause any interference to primary users (PUs) of the primary network. For this purpose, CR users need to accurately estimate the features and activities of the primary users. In this paper, a novel characterization of heterogeneous PUs and a novel reconfigurability solution in CR networks are introduced. The characterization of PUs consists of a detector and classifier that distinguishes between heterogenous PUs. The PU characteristics stored in radio environmental maps are utilized by an interference/throughput adapter for the optimization of CR parameters. The performance of the proposed solutions is evaluated by showing false alarm and missed detection probabilities of the detector/classifier in a multipath fading channel with additive white Gaussian noise. Moreover, the impact of the PU characteristics on the CR throughput is analyzed.  相似文献   

4.
The characteristics of cognitive radio networks have huge impacts on the end‐to‐end performance of the transmission control protocol (TCP) for secondary users. Thus, the existing TCP throughput expression, widely used in wired and wireless networks, is no longer suitable for cognitive radio networks. In this paper, we derive the transmission opportunity of secondary users, taking into account the dynamics of spectrum availability, the overhead and errors of spectrum sensing, as well as the interaction between TCP and lower layers. The amount of transmission opportunity is expressed in terms of effective data transmission time. On the basis of the analysis of the transmission opportunity, an expression of an effective TCP throughput is then derived. To evaluate this effective TCP throughput expression, two cross‐layer optimization problems are formulated as application examples to maximize the transport layer effective throughput and energy utility, respectively. Simulation results show that our analysis on transmission opportunity is accurate, and the derived effective TCP throughput expression is more precise than existing ones. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Cognitive radio (CR) is considered to be a promising technology for future wireless networks to make opportunistic utilization of the unused or underused licensed spectrum. Meanwhile, coordinated multipoint joint transmission (CoMP JT) is another promising technique to improve the performance of cellular networks. In this paper, we propose a CR system with CoMP JT technique. We develop an analytical model of the received signal‐to‐noise ratio at a CR to determine the energy detection threshold and the minimum number of required samples for energy detection–based spectrum sensing in a CR network (CRN) with CoMP JT technique. The performance of energy detection–based spectrum sensing under the developed analytical model is evaluated by simulation and found to be reliable. We formulate an optimization problem for a CRN with CoMP JT technique to configure the channel allocation and user scheduling for maximizing the minimum throughput of the users. The problem is found to be a complex mixed integer linear programming. We solve the problem using an optimization tool for several CRN instances by limiting the number of slots in frames. Further, we propose a heuristic‐based simple channel allocation and user scheduling algorithm to maximize the minimum throughput of the users in CRNs with CoMP JT technique. The proposed algorithm is evaluated via simulation and found to be very efficient.  相似文献   

6.
7.
Spectrum sensing in cognitive radio networks imposes some security threats to the secondary users (SUs) such as primary user emulation attack (PUEA). In the present paper, throughput of an SU is studied for cognitive radio network under PUEA where SU spectrum access is hybrid, ie, either in overlay mode or in underlay mode. A novel analytical expression for throughput of an SU in presence of PUEA is developed. Impact of several parameters such as sensing time, attacker strength, attacker's presence probabilities, maximum allowable SU transmit power, and tolerable interference limit at primary user on the throughput of an SU is investigated. The throughput performance under PUEA and without PUEA is compared.  相似文献   

8.
Dynamic sub-carrier assignment (DSA) is considered as one of the most important aspects for achieving efficient spectrum utilization in orthogonal frequency division multiple access (OFDMA) based networks. Most of well-known DSA algorithms operate in a best effort manner, where the full set of sub-carriers is used in order to achieve the maximum possible quality of service level per user. However, in a real network environment, there are several management aspects to be considered such as context information (users, services, and radio environment conditions), user profiles, and network operator policies. In the context of OFDMA networks management, DSA algorithms should be extended incorporating such aspects in order to introduce fairness in the assignment of sub-carriers as well as to improve the overall system performance. In this paper, an efficient radio resource management scheme that incorporates a new DSA algorithm which exploits context profiles and policies information is presented. Results showcase the benefits that the proposed approach brings in terms of fairness on sub-carriers assignment and overall system performance.  相似文献   

9.
In this paper, the problem of power allocation in a cooperative cognitive radio (CR) network is investigated. An optimal power allocation is proposed to maximize efficiency of the secondary network in which secondary users transmit simultaneously over a spectral band assigned to the primary users. The CR network employs directional relays to improve efficiency of the communication links and minimize interference introduced to the primary users. Unlike the conventional cooperative relay‐assisted network, the directional relays are grouped in clusters. This clustering technique along with directional transmission can significantly reduce interference to the primary links and improve the system performance. Two algorithms are also developed on the basis of the penalty method to determine unknown transmission powers. Some corroborant numerical examples are provided to illustrate quick convergence behavior of the proposed algorithms and great superiority of employing clustered directional relays in cooperative CR networks. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, the problem of spectrum status determination is considered for large cognitive radio (CR) ad hoc networks. Spectrum sensing and spectrum decision are critical for cognitive radio network throughput and hence obtaining accurate knowledge of the spectrum status is vitally important to better spectrum usage decisions. The major challenge of this type of problem lies in the fact that for a network covering a large geographical area, only very limited measurements of spectrum occupancy during spectrum sensing may be obtained by the CR users for a certain location in any given time slot. This is due to both the hardware limitations as well as the tradeoff between spectrum sensing time and data throughput of the CR users. By representing the spectrum sensing results across the network as an image, spectrum status determination is formulated as an image recovery problem. The method of total variation inpainting is applied to solve the problem with low determination error. The proposed method takes advantage of the correlations in multiple dimensions and the numerical results demonstrate the effectiveness of the proposed scheme.  相似文献   

11.
In this paper, we have investigated a technique to eliminate the sensing-throughput trade-off of the conventional method in the cognitive radio network. First, we have discussed the sensing—throughput trade-off caused by the conventional method in the cognitive radio network and then proposes a frame structure for eliminating such an issue which is presented in the conventional approach. However, the proposed method has a drawback, which is solved by the enhancement in the frame structure. We have numerically simulated and compared the throughput of cognitive users for both (conventional and propose) methods. The frame structure enhancement technique decreases the probability of frame collision between the primary and secondary users (SUs) and reduces the data rate loss.  相似文献   

12.
In cognitive radio networks (CRNs), hybrid overlay and underlay sharing transmission mode is an effective technique to improve the efficiency of radio spectrum. Unlike existing works in literatures where only one secondary user (SU) uses both overlay and underlay mode, the different transmission modes should dynamically be allocated to different SUs according to their different quality of services (QoS) to achieve the maximal efficiency of radio spectrum. However, dynamic sharing mode allocation for heterogeneous services is still a great challenge in CNRs. In this paper, we propose a new resource allocation method based on dynamic allocation hybrid sharing transmission mode of overlay and underlay (Dy-HySOU) to obtain extra spectrum resource for SUs without interfering with the primary users. We formulate the Dy-HySOU resource allocation problem as a mixed-integer programming to optimize the total system throughput with simultaneous heterogeneous QoS guarantee. To decrease the algorithm complexity, we divide the problem into two sub-problems: subchannel allocation and power allocation. Cutset is used to achieve the optimal subchannel allocation, and the optimal power allocation is obtained by Lagrangian dual function decomposition and subgradient algorithm. Simulation results show that the proposed algorithm further improves spectrum utilization with simultaneous fairness guarantee, and the achieved Dy-HySOU diversity gain is satisfying.  相似文献   

13.
The primary objective of cooperation in cognitive radio (CR) networks is to increase the spectrum access efficiency and improve the network performance. However, Byzantine adversaries or unintentional erroneous conduct in cooperation can lead to destructive behavior of CR users that can decrease their own and others’ performances. This work presents a dynamic solution for cooperation reliability in conditions with constraints typical for a CR network. Specifically, in CR networks, the information on the success of cooperation can be limited only to cases with interference; when malicious, cooperators can be completely non-correlated and can alter behavior; and the set of available cooperators can dynamically change in time. In order to face these challenges, each CR user autonomously decides with whom to cooperate by learning cooperators behavior with a reinforcement learning (RL) algorithm. This RL algorithm determines the suitability of the available cooperators, and selects the most appropriate ones to cooperate with the objective to increase the efficiency of spectrum access in CR networks. The simulation results demonstrate the learning capabilities of the proposed solution and especially its reliable behavior under highly unreliable conditions.  相似文献   

14.
This paper deals with analysis, performance evaluation and optimization of cognitive radio networks with central controller. The main principle of this technology is that secondary users are enabled to make opportunistic use of the spectrum part, which is actually unused by the primary users. The considered network enables heterogeneous slotted structure for the channel, in which the secondary user’s packets are transmitted on a slot basis, while the primary user’s packets are forwarded in super-slots, i.e. in fixed length slot-blocks. This heterogeneous slotted channel structure enables more flexible operation leading to more realistic system model of cognitive radio network. We model the cognitive radio networks by preemptive priority queueing model with two classes of customers. We solve the model by applying Markov chain technique and derive the steady-state distributions of the number of primary user’s packets and secondary user’s packets in the system. We provide the formulas for several performance measures including the interruption rate, loss rate, throughput, and average latency of secondary users. After validating the analysis by simulation the influence of the secondary user’s buffer capacity on various system performance measures is investigated. In the last part of the paper we address the question of optimal design of secondary user’s buffer capacity.  相似文献   

15.
The need to provide computer network access to mobile terminals and computer communications in the mobile environment has stimulated and motivated the current developments in this area. Packet radio technology has developed over the past decade in response to the need for real-time, interactive communications among mobile users and shared computer resources. In computer communication systems we have a great need for sharing expensive resources among a collection of high peak-to-average (i.e., bursty) users. Packet radio networks provide an effective way to interconnect fixed and mobile resources. The results of an attempt to study the performance of the mobile packet radio network for computer communications over degraded channels are presented. We develop a model under fading conditions and derive a protocol for evaluating the performance of the mobile packet radio network (MPRNET) in terms of the packet error rate, packet delay, throughput and average number of retransmitted packets per cycle. The analytical results are presented and numerical examples are given to illustrate the behavior of these performance criteria as a function of packet transmission rate, packets transmitted per cycle, packet size, and vehicle speed with the help of appropriate plots.  相似文献   

16.
We study the resource allocation (RA) problem in a multiuser OFDM-based cognitive radio (CR) system for non-realtime (NRT) applications in which average user data rates are to be maintained proportionally. In contrast to existing algorithms designed for multiuser OFDM systems, which are unable to guarantee users proportional rates when applied in a CR system, the proposed optimal RA algorithm ensures that CR user rates are maintained in proportion to predefined target rates while at the same time providing an improved system throughput.  相似文献   

17.
Cognitive radio (CR) has attracted considerable attention as a promising technology for solving the current inefficient use of spectrum. In CR networks, available sub-channels are dynamically assigned to secondary users (SUs). However, when a primary user accesses a primary channel consisting of multiple sub-channels, data transmissions of the SUs already using the sub-channels may be terminated. In this paper, we analyze the performance of dynamic spectrum handoff scheme with channel bonding, in which the number of sub-channels used by an SU are variable. We model the multichannel CR network as a multiserver priority queueing system without waiting facility, deriving the blocking probability, the forced termination probability and the throughput for SUs. In terms of the way of forced termination, we consider two policies; one is that SUs using the largest number of sub-channels are forced to terminate their transmissions, and the other is that SUs using the smallest number of sub-channels are chosen for termination. The analysis is also validated by simulation. Numerical examples show that in both forced-termination policies, the throughput of SUs that are forced to terminate their transmissions degrades as the offered load to the system increases.  相似文献   

18.
A new form of multiuser diversity, named multiuser interference diversity, is investigated for opportunistic communications in cognitive radio (CR) networks by exploiting the mutual interference between the CR and the existing primary radio (PR) links. The multiuser diversity gain and ergodic throughput are analyzed for different types of CR networks and compared against those in the conventional networks without the PR link.  相似文献   

19.
CRAHNs: Cognitive radio ad hoc networks   总被引:1,自引:0,他引:1  
Cognitive radio (CR) technology is envisaged to solve the problems in wireless networks resulting from the limited available spectrum and the inefficiency in the spectrum usage by exploiting the existing wireless spectrum opportunistically. CR networks, equipped with the intrinsic capabilities of the cognitive radio, will provide an ultimate spectrum-aware communication paradigm in wireless communications. CR networks, however, impose unique challenges due to the high fluctuation in the available spectrum as well as diverse quality-of-service (QoS) requirements. Specifically, in cognitive radio ad hoc networks (CRAHNs), the distributed multi-hop architecture, the dynamic network topology, and the time and location varying spectrum availability are some of the key distinguishing factors. In this paper, intrinsic properties and current research challenges of the CRAHNs are presented. First, novel spectrum management functionalities such as spectrum sensing, spectrum sharing, and spectrum decision, and spectrum mobility are introduced from the viewpoint of a network requiring distributed coordination. A particular emphasis is given to distributed coordination between CR users through the establishment of a common control channel. Moreover, the influence of these functions on the performance of the upper layer protocols, such as the network layer, and transport layer protocols are investigated and open research issues in these areas are also outlined. Finally, a new direction called the commons model is explained, where CRAHN users may independently regulate their own operation based on pre-decided spectrum etiquette.  相似文献   

20.
A continuous-time Markov-chain model for an asynchronous communication spread-spectrum code-division-multiple-access (CDMA) packet radio network is developed. The network is composed of mutually independent users. The receiver-based code is considered; a terminal with a packet to send looks up the destination's code and transmits on that code. Each user senses the channel load and refrains from transmission if the channel load exceeds the channel threshold. The model makes it possible to study the threshold effect of channel load on the performance of the CDMA packet radio network. Improvements in performance of spread-spectrum packet radio networks due to channel-load sensing are shown. Steady-state results for throughput are obtained  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号