首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过OM、XRD、TEM、SEM和电子拉力试验机等,研究了固溶和时效处理对Mg-8Gd-2.5Nd-0.5Zr(质量分数,%)合金显微组织和力学性能的影响。结果表明:合金铸态组织由α-Mg基体和含Mg5Gd相、Mg12Nd相的粗大枝晶组成,经过热处理后,合金中方块状颗粒相明显增多,且分布在晶界处;固溶时效态合金析出的纳米尺寸方块相可有效强化合金。时效态合金中β'析出相形态类似多个纺锤形相连接而成,相互之间的夹角呈120°,且具有周期结构。铸态、固溶态和时效态合金在不同状态下的室温拉伸强度分别为:189.3、201.4和251.1MPa。  相似文献   

2.
本文采用Gleeble-1500B热模拟试验机研究了铸造 Mg-2.5Nd-1.0Zn-0.5Zr稀土镁合金在变形温度为200~400℃、应变速率为0.001~0.1 s?1,变形程度为30%条件下的高温压缩变形行为,分析了实验合金在高温变形过程中应力与应变速率和变形温度之间的关系。结果表明,Mg-2.5Nd-1.0Zn-0.5Zr镁合金热变形时,变形温度和应变速率是影响合金热变形性能的重要因素。应变速率越低,温度越高时更容易发生再结晶。提高变形温度和变形量、降低应变速率,均使动态再结晶程度增加,晶粒尺寸加大。  相似文献   

3.
采用光学显微镜、扫描电镜、X射线衍射仪和拉伸试验机等研究了不同热处理状态下Mg-12Gd-1Zn-0.5Zr合金的物相、显微组织和力学性能.结果 表明:铸态Mg-12Gd-1Zn-0.5Zr合金的组织主要由α-Mg基体、Mg5(Gd,Zn)、Mg5Gd以及Mg10ZnGd(18R-LPSO)相构成.固溶处理后,LPSO...  相似文献   

4.
采用XRD、DTA、OM和TEM研究Mg-2.54Nd-0.26Zn-0.32Zr合金铸态和热处理后的相组成、相变温度、微观组织.研究表明:Mg-2.54Nd-0.26Zn-0.32Zr合金铸态组织析出相主要是分布在晶界的块状Mg_(12)Nd稀土化合物,只有少量的片状和粒状Mg_(12)Nd相分布在晶界和晶内;T6处理后Mg_(12)Nd以相互交叉的片状形式团簇状分布在基体中,形成方式为点状析出相聚集而成.  相似文献   

5.
为探究异形箱体在成形过程中加热次数对材料的影响,以Mg-13Gd-4Y-2Zn-0.5Zr大塑性变形稀土镁合金为原料,进行杯形件单道次和等温多道次成形试验,并采用光学显微镜、扫描电子显微镜和X射线衍射仪和万能材料试验机等检测手段分析各个变形过程中合金微观组织和力学性能的变化。结果表明:经过单道次成形的杯形件晶粒尺寸较小且LPSO相分布均匀,对位错运动起到了较强的阻碍作用。且该合金的极限抗拉强度、拉伸屈服强度及伸长率都达到最大值,分别为272.64 MPa、160.03 MPa和8.3%,综合力学性能较高。  相似文献   

6.
为达到晶粒细化和提高力学性能的目的,采用旋转反挤压变形工艺对高强耐热Mg-13Gd-4Y-2Zn-0. 5Zr合金进行剧烈塑性变形。利用Gleeble-3500热模拟试验机研究了Mg-13Gd-4Y-2Zn-0. 5Zr合金杯形件成形过程中成形温度对材料组织和性能的影响规律。结果表明:在变形过程中,合金基面滑移困难,产生了不连续的动态再结晶,随温度的升高,再结晶晶粒长大,在长大的再结晶晶界与原始晶界处产生二次再结晶。变形区域内的晶粒为随机取向,随温度的变化发生旋转,在450℃下晶粒的基面平行于挤压方向,织构强度弱化。变形区域内各区域硬度值相差不大,在轴心附近的硬度值相对较低,且在450℃下硬度值最低。  相似文献   

7.
利用扫描电镜(SEM)、X射线衍射仪、电子万能试验机和激光导热仪研究了轧制温度和轧制道次对Mg-1RE-0.5Zn-0.5Zr合金组织和性能的影响。结果表明:铸态Mg-1RE-0.5Zn-0.5Zr合金主要由镁基体(α-Mg)和沿晶界分布的LaMg_(12)、CeMg_(12)第二相组成。经过轧制变形后,合金的晶粒细化,力学性能得到改善。当轧制温度相同时,合金的抗拉强度随着轧制道次的增加而提高。当轧制道次相同时,轧制温度越高,合金的抗拉强度越高。在相同的轧制温度下,合金的断后伸长率随着轧制道次的增加先降低后升高。轧制退火态合金的抗拉强度低于轧制态合金,这是由于退火处理后晶粒长大,合金的抗拉强度略有降低。合金在410℃轧制不同道次时的热导率较高,3道次轧制的最高,达146.678 W/(m·K),比铸态合金提高了20.9%。410和450℃轧制退火态合金的热导率相比轧制态的变化不明显。  相似文献   

8.
通过光学显微镜(OM)、扫描电镜(SEM)、X射线衍射仪(XRD)、浸泡测试和电化学测试等研究了Mg-2Zn-1Y-0.5Zr合金在490℃固溶4~14h后的微观组织和腐蚀性能.结果 表明:随着固溶时间的延长,合金的晶粒尺寸逐渐由98.19 μm增大到142.90 μm,合金中的第二相逐渐溶解,第二相体积分数由1.33...  相似文献   

9.
用金属型铸造的方法制备得到由α-Mg及Mg12Pr组成的复相镁合金,利用光学显微镜、扫描电镜、X射线衍射仪等对合金显微组织和相组成进行了研究,通过拉伸试验测试了所制备合金的室温力学性能.研究发现,少量Pr可以细化Mg-0.6Zr合金晶粒,并生成强度较高的金属间化合物,Mg-0.6Zr-0.6Pr合金同时具有最高的抗拉强度和伸长率,分别比Mg-0.6Zr合金提高了9.8%和118%,其屈服强度则提高了42%.  相似文献   

10.
新型Mg-4.5Gd-2.6Nd-0.5Zn-0.5Zr铸造合金的显微组织和力学性能进行了研究。发现了合金的铸态组织由近等轴晶,Mg12(Nd,Gd)和Mg3Gd合金组成。通过最优化热处理后,合金的常温和高温 250℃时的 屈服强度 , 抗拉强度 和延伸率分别为 205MP, 320MP和 4.0%;145MP, 245MP 和 18.5% 。合金的强化原则在文中做了叙述。合金常温下断裂为脆性断裂,高温下为韧性断裂。高温下断裂特征具有很多韧窝和撕裂脊。  相似文献   

11.
研究了不同固溶处理工艺对Mg-2.6Sm-1.3Gd-0.6Zn-0.5Zr合金显微组织和力学性能的影响。合金的铸态显微组织主要由α-Mg和(Mg,Zn)3(Sm,Gd)1共晶相组成。510℃,4 h为最佳固溶处理条件,晶界附近的共晶相几乎全部溶于镁基体中,合金固溶态的室温抗拉强度为246 MPa,延伸率为11.3%。合金200℃时效析出序列为Mgssss→β’’(D019)→β’(bct)→β(fcc),峰时效态合金的屈服强度和抗拉强度达到185 MPa和282 MPa,延伸率为6.1%。  相似文献   

12.
通过差热分析(DSC)、光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)等分析手段研究了不同固溶处理工艺对挤压态Mg-9.2Gd-1.9Y-1.8Zn-0.5Zr合金微观组织和力学性能的影响.结果表明:挤压态Mg-9.2Gd-1.9Y-1.8Zn-0.5Zr合金经过固溶处理后显微组织主要由α-Mg基体、Mg1...  相似文献   

13.
14.
15.
采用X射线衍射仪、光学显微镜、扫描电镜、能谱仪和电子拉伸试验机等设备研究了Nd对Mg-13Gd-0.5Zr合金组织和力学性能的影响,结合错配度理论、位错密度的变化规律讨论了合金晶粒细化的机理,并从细晶强化和析出强化等方面阐述了合金强化机制。研究发现Mg-13Gd-0.5Zr合金的组成相主要有α-Mg、Mg<sub>5</sub>Gd,Nd的加入在合金中形成了新相Mg<sub>41</sub>Nd<sub>5</sub>,并细化了合金晶粒。Nd的加入显著提高了Mg-13Gd-0.5Zr合金的室温和高温力学性能,当Nd的添加量为2%时,合金在室温和高温下的力学性能达到最大值279(室温)、319 MPa(250 ℃),合金力学性能的提高主要归因于Mg<sub>5</sub>Gd和Mg<sub>41</sub>Nd<sub>5</sub>相的析出强化和细晶强化的双重效果。Mg-13Gd-2Nd-0.5Zr合金在不同温度下的断裂方式主要以脆性断裂为主,随着拉伸温度的升高并由脆性断裂向韧性断裂转变。  相似文献   

16.
采用DSC、SEM、EDS、OM等检测方法研究了Mg-9.8Gd-3.5Y-2Zn-0.5Zr合金铸锭在505~535 ℃均匀化处理0~84 h后的组织演变规律。结果表明,铸态组织呈枝晶状,第二相含量为19.86%,晶间第二相主要由白色点状共晶相和块状LPSO相组成,晶内第二相为少量针状LPSO相、花瓣状Zr团簇相和方形富稀土相。均匀化处理后的LPSO相形貌为晶间块状和晶内片层状两种。晶内片层状LPSO相的含量受均匀化温度和均匀化时间的影响。在505~525 ℃下,晶内片层状LPSO相随均匀化温度的升高,生长速度加快,数量增多。在相同均匀化温度下延长保温时间,晶内片层状LPSO相沿晶界向基体内部析出,贯穿晶粒后开始粗化。535 ℃下晶间块状LPSO相转变为W相,晶内片层状LPSO相溶解进入基体。晶间LPSO相对晶界迁移起钉扎作用,在505~525 ℃均匀化,随着保温时间的延长,晶粒长大幅度并不明显。在535 ℃均匀化,晶间LPSO相大量溶解,晶粒开始急剧长大。  相似文献   

17.
18.
研究了合金元素对Mg-12Gd-2Y-1.5Sm-0.5Zr合金显微组织和力学性能的影响.结果表明,该合金晶粒组织细小,少量Y、Sm和大量Gd固溶在镁基体里,同时有少量MgGd3、Mg24Y5和Mg41Sm5相析出;合金在室温、200、250℃下的抗拉强度分别为258、304、330 MPa;断裂为脆性断裂,与合金的低伸长率相对应.  相似文献   

19.
挤压变形对Mg-5.0Y-7.0Gd-1.3Nd-0.5Zr合金组织和性能的影响   总被引:2,自引:0,他引:2  
对Mg-5.0Y-7.0Gd-1.3Nd-0.5Zr(EW75M)合金在不同条件下挤压变形后的组织和性能进行测试。结果表明:随着挤压比的增大,合金的强度和塑性均大幅度提高,当挤压比增大到20以后,晶粒细化对合金的强化效果趋于稳定;当挤压筒温度由400℃升高到450℃时,合金强度和伸长率的降幅均在5%以内,挤压筒温度在400℃~450℃变化时对合金挤压变形后的性能影响较小;将合金均匀化处理(535℃、24h)后直接进行挤压变形(挤压比20,挤压筒温度400℃,挤压速度1~2m/min),其极限抗拉强度、屈服强度和伸长率分别达到335MPa、240MPa和16.5%。  相似文献   

20.
采用光学显微镜(OM)、扫描电镜(SEM)、X射线衍射仪和万能力学试验机等研究了固溶和时效处理对Mg-8Gd-3Y-1.5Zn-0.6Zr合金显微组织和力学性能的影响。结果表明,Mg-8Gd-3Y-1.5Zn-0.6Zr合金铸态、固溶态和时效态的显微组织均由α-Mg基体、Mg5(Gd, Y, Zn)相和LPSO结构组成;合金经固溶和时效处理后的最大抗拉强度由铸态的187.96 MPa提高到241.93 MPa,提高了28.71%,伸长率由铸态的8.48%提高到13.91%,提高了64.03%;不同热处理状态下合金的拉伸断口形貌主要以脆性断裂为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号