首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supposef(x1,..., xn) is a polynomial of even degree d having coefficients in the finite field k=[q] and satisfying certain natural conditions, and let χ be the quadratic character of k. Then $$\left| {\sum {x_1 , \ldots ,} x_n \in k\chi (f(x_1 , \ldots ,x_n ))} \right| \leqslant Cq^{{n \mathord{\left/ {\vphantom {n 2}} \right. \kern-\nulldelimiterspace} 2}} $$ where the constant C depends only on d and n.  相似文献   

2.
Suppose that on the Interval [a, b] the nodes $$a = x_0< x_1< \ldots< x_m< x_{m + 1} = b$$ are given and the functions u0(t)=ω0(t) $$u_i (t) = \omega _0 (t)\smallint _0^t \omega _1 (\varepsilon _1 )d\varepsilon _1 \ldots \smallint _a^{\varepsilon _{\iota - 1} } \omega _1 (\varepsilon _1 )d\varepsilon _\iota ,\varepsilon _0 = t(i = 1,2, \ldots ,n)$$ where the functions ωi(t)> 0 have continuous (n?i)-th derivatives (i=0, 1, ..., n). Sn,m will designate the subspace of functions that have continuous (n?1)-st derivatives on [a, b] and coincide on each of the intervals [xj, xj+1] (j=0, 1, ..., m) with some polynomial from the system {ui(t)} i=0 n .THEOREM. For every continuous function on [a, b] there exists in Sn,m a unique element of best mean approximation.  相似文献   

3.
The variety \(\mathfrak{u}_{m,n} \) is defined by the system of n-ary operations ωi,..., ωm, the system of m-ary operations ?i,..., ?n, 1≤ m ≤ n, and the system of identities $$\begin{gathered} x_1 ...x_n \omega _1 ...x_1 ...x_n \omega _m \varphi _i = x_i (i = 1,...,n), \hfill \\ x_1 ...x_m \varphi _1 ...x_1 ...x_m \varphi _n \omega _j = x_j (i = 1,...,m), \hfill \\ \end{gathered} $$ It is proved in this paper that the subalgebra U of the free product \(\Pi _{i \in I}^* A_i \) of the algebras Ai (i ε I) can be expanded as the free product of nonempty intersections U ∩ Ai (i ε I) and a free algebra.  相似文献   

4.
A system of Diophantine equations is considered for integers n1,...,2, $$\phi ^{\left( k \right)} \left( {x_1 , \ldots ,x_s } \right) = n_k \left( {k = 1, \ldots ,2} \right)$$ , Ф(k)(x1,...,xs)=nk (k=1,...,ρ), where Ф(k) are integral forms of degree d is s variables. The singular integral and singular series of this problem are investigated.  相似文献   

5.
Lower bounds are obtained for linear forms of values of Siegel's G functions. In particular, it is found that ifα 1...,α m are pairwise distinct nonzero rational numbers, then for any positive ? and a natural q>q0(?,α 1,...,α m) we have for any nonzero set (x0 x1,..., xm) of integers the inequality $$|x_0 + x_1 In(i + a_1 q^{ - 1} ) + ... + x_m In(i + a_m q^{ - 1} )|q^{ - \lambda } (h_1 ...h_m )^{ - 1 - \varepsilon } ,$$ where hi=max(i, ¦xi¦), andλ=λ (?,α 1,...,α m).  相似文献   

6.
Для класса ? аналитич еских в единичном кру ге функций, ограниченны х по модулю единицей, погрешност ью наилучшего прибли жения в точкеz 0 по значениям в точкахz 1,..., zn, заданным с погрешнос тьюδ, называется вели чинаr(z 0, z1 z..., zn, α)=inf sup sup ¦f(z0)-S(f1, ...fn)¦, где нижняя грань бере тся по всевозможным ф ункциям S: Сn→С. ДляE~((?1,1) иz 0∈ ∈(-1,1)Е рассматривается задача о нахождении п орядка информативности мно жестваЕ, т.е. минимальногоп, на котором достигается нижняя грань в равенстве $$R(z_0 ,\delta ,E) = \mathop {\inf }\limits_n {\text{ }}\mathop {\inf }\limits_{z_1 , \ldots ,z_n \in E} {\text{ }}r(z_0 ,z_1 , \ldots ,z_n ,\delta ).$$ Кроме того, приδ, близ ких к 1, решена задача о нахождении величины $$r_n (\delta ,E) = \mathop {\inf }\limits_{z_1 , \ldots ,z_n \in Ez_0 \in E} \sup r(z_0 ,z_1 , \ldots ,z_n ,\delta )$$ и найдены узлы, на кото рых достигается нижн яя грань.  相似文献   

7.
Letμ>m?1, letν be a rational number, and letω k=b k v , where bk ≠ 0 are distinct numbers of an imaginary quadratic field K, which satisfy some additional conditions. Then $$\begin{gathered} |{}_1x_1 \omega _1 + ... + x_m \omega _m | > X^{ - \mu } , \hfill \\ X = \max |x_k | \geqslant X, > 0, \hfill \\ 1 \leqslant k \leqslant m \hfill \\ \end{gathered}$$ where x1, ..., xm are integers of the field K, and X0 is an effective constant.  相似文献   

8.
Supposef is a polynomial of degree n≥3 with integral coefficientsa 0,a 1,...,a n; q is a natural number; (a 1,...,a n, q)=1,f(0) = 0. It is proved that $$\left| {\sum\nolimits_{x = 1}^q {e^{2\pi if(x)/q} } } \right|< e^{5n^2 /\ln n} q^{1 - 1/n} $$ .  相似文献   

9.
We consider an algebraB n,m , over the field R with n+m generators xi,..., xn, ξ1,..., ηm, satisfying the following relations: (1') $$\left[ {x_k ,x_l } \right] \equiv x_k x_l - x_l x_k = 0,[x_k ,\xi _i ] = 0,$$ , (2') $$\left\{ {\xi _i ,\xi _j } \right\} \equiv \xi _i \xi _j + \xi _j \xi _i = 0$$ , where k,l =1, ..., n and i, j=1,..., m. In this algebra we define differentiation, integration, and also a group of automorphisms. We obtain an integration equation invariant with respect to this group, which coincides in the case m=0 with the equation for the change of variables in an integral, an equation whichis well known in ordinary analysis; in the case n=0 our equation coincides with F. A. Berezin's result [1, 3] for integration over a Grassman algebra.  相似文献   

10.
Пустьk-мерное евклид ово пространствоR k рассматривается как подмножествоR n . Зафиксируемр, 1<р<∞ иα >(n?k)/p, α≠п. Как обычно, бесселев потенциалJαf обобщенной функции Шварцаf наR n определяется с помощ ью ее преобразования Фурь е \((\widehat{G_\alpha f})(\xi ) = (2\pi )^{ - n/2} [1 + |\xi |^2 ]^{\alpha /2} f(\xi ), \xi \in R^n .B\) , ξ∈R n . В работе характ еризуются положител ьные весовые функцииw(x 1,...,x k ), которые при продолжении наR n с помощью равенстваw(x 1,...,x k ,...,x n )=w(x 1, ...,x k ) обладают с ледующим свойством: существует числос>0, не зависящее отf, такое, что $$\begin{gathered} \int\limits_{R^k } {|(G_\alpha f)(x_1 ,...,x_k ,0,...,0)w(x_1 ,...,x_k )|^p dx_1 ...dx_k \leqq } \hfill \\ \leqq C\int\limits_{R^n } {|f(x_1 ,...,x_n )w(x_1 ,...,x_n )|^p dx_1 ...dx_n } \hfill \\ \end{gathered} $$   相似文献   

11.
The aim of this paper is to show that the following difference equation:Xn+1=α+(xn-k/xn-m)^p, n=0,1,2,…,
where α 〉 -1, p 〉 O, k,m ∈ N are fixed, 0 ≤ m 〈 k, x-k, x-k+1,…,x-m,…,X-1, x0 are positive, has positive nonoscillatory solutions which converge to the positive equilibrium x=α+1. It is interesting that the method described in the paper, in some cases can also be applied when the parameter α is variable.  相似文献   

12.
This paper deals with the quality of approximative solutions for the Subset-Sum-Maximization-Problem maximize $$\sum\limits_{i = l}^n {a_i x_i } $$ subject to $$\sum\limits_{i = l}^n {a_i x_i } \leqslant b$$ wherea l,...,an,bεR+ andx l,...xnε{0,1}. produced by certain heuristics of a Greedy-type. Every heuristic under consideration realizes a feasible solution (x 1, ..., xn) whose objective value is less or equal the optimal value, which is of course not greater thanb. We use the gap between capacityb and realized value as an upper bound for the error made by the heuristic and as a criterion for quality. Under the stochastic model:a 1, ..., an, b independent,a 1...,an uniformly distributed on [0, 1], b uniformly distributed on [0,n] we derive the gap-distributions and the expected size of the gaps. The analyzed algorithms include four algorithms which can be done in linear time and four heuristics which require sorting, which means that they are done inO(nlnn) time.  相似文献   

13.
We consider the solutions of the inequalityLu≤?(¦gradu¦), whereL is a uniformly elliptic homogeneous operator and ? is a function increasing faster than any linear function but not faster thanξ lnξ, in the unbounded domain $$\left\{ {x \in \mathbb{R}^n |\sum\limits_{i = 2}^n {x_i^2< (\psi (x_1 ))^2 ,} {\text{ }} - \infty< x_1< \infty } \right\},$$ , whereψ is a bounded function with bounded derivative. We estimate the growth of the solutions in terms of $\int_0^{x_1 } {(1/\psi (r))dr}$ . For the special case in which?(ξ)=aξ lnξ+C, the solutionsu(x 1,x 2,...,x n ) grow as $\left( {\int_0^{x_1 } {(1/\psi (r))dr} } \right)^N$ , whereN is any given number anda=a(N).  相似文献   

14.
By [4], a semigroupS is called an (n, m)-commutative semigroup (n, m ∈ ?+, the set of all positive integers) if $$x_1 x_2 \cdot \cdot \cdot x_n y_1 y_2 \cdot \cdot \cdot y_m = y_1 y_2 \cdot \cdot \cdot y_m x_1 x_2 \cdot \cdot \cdot x_n $$ holds for allx 1,...,x n ,y 1,...,y m S It is evident that ifS is an (n, m)-commutative semigroup then it is (n′,m′)-commutative for alln′n andm′m. In this paper, for an arbitrary semigroupS, we determine all pairs (n, m) of positive integersn andm for which the semigroupS is (n, m)-commutative. In our investigation a special type of function mapping ?+ into itself plays an important role. These functions which are defined and discussed here will be called permutation functions.  相似文献   

15.
The local behavior of the iterates of a real polynomial is investigated. The fundamental result may be stated as follows: THEOREM. Let xi, for i=1, 2, ..., n+2, be defined recursively by xi+1=f(xi), where x1 is an arbitrary real number and f is a polynomial of degree n. Let xi+1?xi≧1 for i=1, ..., n + 1. Then for all i, 1 ≦i≦n, and all k, 1≦k≦n+1?i, $$ - \frac{{2^{k - 1} }}{{k!}}< f\left[ {x_1 ,... + x_{i + k} } \right]< \frac{{x_{i + k + 1} - x_{i + k} + 2^{k - 1} }}{{k!}},$$ where f[xi, ..., xi+k] denotes the Newton difference quotient. As a consequence of this theorem, the authors obtain information on the local behavior of the solutions of certain nonlinear difference equations. There are several cases, of which the following is typical: THEOREM. Let {xi}, i = 1, 2, 3, ..., be the solution of the nonlinear first order difference equation xi+1=f(xi) where x1 is an arbitrarily assigned real number and f is the polynomial \(f(x) = \sum\limits_{j = 0}^n {a_j x^j } ,n \geqq 2\) . Let δ be positive with δn?1=|2n?1/n!an|. Then, if n is even and an<0, there do not exist n + 1 consecutive increments Δxi=xi+1?xi in the solution {xi} with Δxi≧δ. The special case in which the iterated polynomial has integer coefficients leads to a “nice” upper bound on a generalization of the van der Waerden numbers. Ap k -sequence of length n is defined to be a strictly increasing sequence of positive integers {x 1, ...,x n } for which there exists a polynomial of degree at mostk with integer coefficients and satisfyingf(x j )=x j+1 forj=1, 2, ...,n?1. Definep k (n) to be the least positive integer such that if {1, 2, ...,p k (n)} is partitioned into two sets, then one of the two sets must contain ap k -sequence of lengthn. THEOREM. pn?2(n)≦(n!)(n?2)!/2.  相似文献   

16.
The following inequalities are shown to hold for the least uniform rational deviations Rn(f) of a function f(x), continuous and convex in the interval [a, b]: $$R_n (f) \leqslant C(v)\Omega (f)n^{ - 1} \overbrace {\ln \ldots \ln }^{vtimes}n$$ (ν is an integer, C(ν) depends only on ν, and Ω(f) is the total oscillation of f); $$R_n (f) \leqslant C_1 n^{ - 1} \overbrace {\ln \ldots \ln }^{vtimes}n\mathop {\inf }\limits_{(b - a)\chi _n \leqslant \lambda< b - a} \left\{ {\omega (\lambda ,f) + M(f)n^{ - 1} \ln \frac{{b - a}}{\lambda }} \right\}$$ (ν is an integer, C1(ν) depends only on ν, xn = exp (-n/(500 In2n)), ω (δ,f) is the modulus of continuity of f, and M(f) = max¦f(x) ¦.  相似文献   

17.
Пусть Tn(f)={L1(f), ..., Ln(f)} — набор линейных функционал ов, заданных на простран стве \(C_{(r - 1)} (\parallel f\parallel _{C_{(r - 1)} } = \mathop {\max }\limits_{0 \leqq i \leqq r - 1} \parallel f^{(i)} \parallel _C );A_{n,r}\) — множество всех так их наборов функцио налов; С2n, 2 — множество всех н аборов из 2n функциона лов вида $$T_{2n} (f) = \{ f(x_1 ), \ldots ,f(x_n ),f'(x_1 ), \ldots ,f'(x_n )\}$$ и s: Еn→Е1. Доказано, что е слиW r множество всех 2π-периодических функ цийfεW∞0, 2πr, то приr=1,2,3,... ирε(1, ∞) и $$\begin{gathered} \mathop {\inf }\limits_{T_{2n} \in A_{2n,r} } \parallel \mathop {\inf }\limits_s \mathop {\sup }\limits_{f \in W_\infty ^r } |f( \cdot ) - s(T_{2n} ,f, \cdot )|\parallel _p = \parallel \varphi _{n,r} \parallel _p \hfill \\ \mathop {\inf }\limits_{T_{2n} \in C_{2n,2} } \parallel \mathop {\inf }\limits_s \mathop {\sup }\limits_{f \in W_\infty ^r } |f( \cdot ) - s(T_{2n} ,f, \cdot )|\parallel _p = \parallel \parallel \varphi _{n,r} \parallel _\infty - \varphi _{n,r} \parallel _p , \hfill \\ \end{gathered}$$ где ?n,rr-й периодичес кий интеграл, в средне м равный нулю на периоде, от фун кции ?n, 0t=sign sinnt. При этом указан ы оптимальные методы приближенного вычис ления.  相似文献   

18.
We consider N-multiple trigonometric series whose complex coefficients c j1,...,j N , (j 1,...,j N ) ∈ ? N , form an absolutely convergent series. Then the series $$ \sum\limits_{(j_1 , \ldots ,j_N ) \in \mathbb{Z}^N } {c_{j_1 , \ldots j_N } } e^{i(j_1 x_1 + \ldots + j_N x_N )} = :f(x_1 , \ldots ,x_N ) $$ converges uniformly in Pringsheim’s sense, and consequently, it is the multiple Fourier series of its sum f, which is continuous on the N-dimensional torus $ \mathbb{T} $ N , $ \mathbb{T} $ := [?π, π). We give sufficient conditions in terms of the coefficients in order that >f belong to one of the multiplicative Lipschitz classes Lip (α1,..., α N ) and lip (α1,..., α N ) for some α1,..., α N > 0. These multiplicative Lipschitz classes of functions are defined in terms of the multiple difference operator of first order in each variable. The conditions given by us are not only sufficient, but also necessary for a special subclass of coefficients. Our auxiliary results on the equivalence between the order of magnitude of the rectangular partial sums and that of the rectangular remaining sums of related N-multiple numerical series may be useful in other investigations, too.  相似文献   

19.
Let [K:Q]=k, fi εK[[z]], ξ εK, Q εK[y1,...,ym]. A relation Q(f1(ξ),..., fm(ξ))=0 is called global if it holds in any local field where all fi(ξ) exist. The paper establishes that for series of the form $$\sum\limits_{n = 0}^\infty {\frac{{(\mu _1 )_n \ldots (\mu _p )_n }}{{(\lambda _1 )_n \ldots (\lambda _{q - 1} )_n n!}}\left( {\frac{{z^{p - q} }}{{q - p}}} \right)^n , p > q,} $$ with some natural hypotheses on parameters global relations do not exist. Bibliography: 9 titles.  相似文献   

20.
We give a relatively short proof of the following theorem of Sternfeld: LetX be a compact metric space with dimX ≧ 2, and letX ?R m be an embedding such that everyfC(X) can be represented as $$f(x_1 ,x_2 ,...,x_m ) = \sum\limits_{i = 1}^m {g_i (x_i ),} (x_1 ,x_2 ,...,x_m ) \in X,g_i \in $$ Thenm ≧ 2 dimX + 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号