首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
KNN基无铅压电陶瓷以其较高的居里温度、低的介电常数和高的机电耦合系数等特点,近年来备受研究人员的关注。本文结合近几年来相关文献的报道,综合分析了在KNN基无铅压电陶瓷中添加ABO3型合物对其电学性能的影响,展望了KNN基无铅压电陶瓷将来的发展趋势。  相似文献   

2.
It is well-known that the high sintering temperatures of (Na1/2Bi1/2)TiO3 (NBT)-based incipient piezoceramics limit their applications on low-cost multilayer piezoelectric actuators with base metal internal electrodes. In this work, a synergistic sintering additive of 0.75 wt% Li2CO3 and 0.75 wt% CuO was utilized to explore the effect on sintering behavior and electrostrain of (Na1/2Bi1/2)0.935Ba0.065Ti0.975(Fe1/2Nb1/2)0.025O3 (NBT-BT-0.025FN) incipient piezoceramic. The optimal sintering temperature of NBT-BT-0.025FN decreased from 1160°C to 940°C due to the formation of a liquid phase, with limited degradation on electrostrain. When sintered at 940°C, a large strain of 0.39% (a nominal piezocoefficient of 571 pm/V) was achieved, which is promising for potential actuator applications co-firing with Ag electrodes.  相似文献   

3.
《Ceramics International》2023,49(10):15751-15760
In this paper, the ceramics with composition of (0.98-x)(K0.5Na0.5)(Nb0.96Sb0.04)O3-0.02(Bi0.5Na0.5)(Zr0.8Ti0.2)O3-xCaZrO3 (abbreviated as (0.98-x)KNNS-0.02BNZT-xCZ, x = 0, 0.01, 0.015, 0.02, 0.025, 0.03) were prepared by a traditional solid-state reaction method. The effect of the additional amount of CaZrO3 on the phase structure, microstructure, dispersion index, domain structure and piezoelectric properties of ceramics was systematically studied. Finally, the piezoelectric properties and thermal stability of ceramics could be controlled by adding different amounts of CaZrO3. The addition of CaZrO3 transferred the phase structure of the ceramics from orthogonal-tetragonal (O-T) coexistence phase to rhombohedral-orthogonal (R–O) coexistence phase, which could be demonstrated by XRD test, temperature-dependent Raman spectra and εrT plot analysis. And when x = 0.02, the ceramics possessed the best piezoelectric and dielectric properties (d33 = 253 pC/N, εr = 1185, tanδ = 0.044). Such excellent electrical properties could be originated from the heterogeneous domain structure and small-size nano-domains of the ceramics. Moreover, with the increase of CaZrO3 doping amount, the dispersion index of ceramics gradually increased from 1.404 to 1.871, which showed more obvious dispersion phase transition characteristics and improved the thermal stability of ceramics. Particularly, when x = 0.02, after annealing at a high temperature of 220 °C (close to its Curie temperature), the d33 tested at room temperature remained above 85% of that without annealing. The results indicated that (0.98-x)KNNS-0.02BNZT-xCZ ceramic was a promising lead-free piezoelectric ceramic system.  相似文献   

4.
One of the inherent disadvantages of Bi0.5Na0.5TiO3-based (BNT-based) piezoceramics is that an increment of the depolarization temperature (Td) is generally accompanied by a deterioration of the temperature stability of the real-time piezoelectric constant (d33), which severely restricts the practical applications of the materials. Herein, we propose a new strategy to mitigate the conflict between the elevation of Td and the temperature stability of the real-time d33 in BNT-based ceramics via integrating the pressure-assisted sintering and quenching process. By this strategy, we not only increased the Td from 109 to 166°C but also improved the temperature stability of the real-time d33 (the temperature coefficient Ttc = ± 13 pC/N) in 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ceramic. Both the built-in field and the increment of the field-induced R3c phase fraction play the significant role in enhancing the Td and the temperature stability of the real-time d33. Thus, our work provides a simple and effective approach for designing piezoceramics with high Td and a superior temperature stability of the real-time d33.  相似文献   

5.
The effects of acceptor doping with manganese as either MnO2 or MnNb2O6 (MnN) with CuO on the dielectric, ferroelectric, and piezoelectric properties of PIN-PMN-PT ceramics were investigated. The 2% MnNb2O6-doped PIN-PMN-PT (6Pb(Mn1/3Nb2/3)O3-25Pb(In1/2Nb1/2)O3-34Pb(Mg1/3Nb2/3)O3-35PbTiO3) ceramics possessed hard properties such as high coercive field (EC) of 11.7 kV/cm, low dielectric loss (tan δ) of 0.7%, and high electromechanical quality factor (QM) of 1011. These properties were diminished in MnO2-doped ceramics because of lower oxygen vacancy defect concentration, and exaggerated grain growth resulted in >20 µm grain size. Co-doping with 2 mol% MnNb2O6 and 0.5 mol% CuO retained hardened properties such as high EC of 9.6 kV/cm, low tan δ of 0.6%, and high QM of 1029. MnNb2O6-doped and MnNb2O6 + Cu co-doped ceramics display excellent figures of merit for resonance and off-resonance applications as well as high energy conversion efficiencies which make them promising candidates for high-power transducer elements.  相似文献   

6.
Effects of 0.5 wt% CuO addition on the sintering, structural and electrical properties of perovskite layer structured (PLS) Sr2Nb2O7 ceramics prepared by solid‐state reaction method are investigated. The addition of CuO is beneficial to the liquid phase bridge formation at sintering process, leading to lower sintering temperature of 1180°C and larger bulk density up to 98%. Meanwhile, CuO modified Sr2Nb2O7 ceramics show a remarkable d33 of (1.1 ± 0.1) pC/N while still with a very high Tc of (1340 ± 2)°C. Raman spectra indicate that the improvement of piezoelectricity could be attributed to the rotation and/or distortion of oxygen octahedron caused by possible Cu2+ substitution at the A‐sites of Sr2Nb2O7.  相似文献   

7.
The structural and dielectric properties of Na0.5Bi0.5TiO3 (NBT) ceramics and crystals have been investigated and are compared to that of Pb(Zr0.55Ti0.45)O3 (PZT55/45) and Pb(Mg1/3Nb2/3)0.72Ti0.28O3 (PMNT 72/28) ceramics. X-ray diffraction (XRD) profiles for (100), (110), (111), (200), (220), and (222) (referred to cubic structure) reveal that the monoclinic structure with Cc space group exists both in the NBT single crystal and ceramics. The diffraction profile obtained with high resolution laboratory XRD for the NBT single crystal can be well described, using Cc model instead of R3c model. The dielectric constant of NBT below Thump shows some similarity to that of PZT45/55 ceramics below 50°C in which oxygen octahedron rotations cause the frequency dispersion of the dielectric constant. The temperature-dependent dielectric constant for NBT can be deconvolved into two independent processes. The lower temperature process shows a typical relaxor characteristic and follows the Vogel-Fulcher relationship. The other process at higher temperature shows less frequency-dependent behavior. Comparing the dielectric constant of NBT with that of PZT55/45 and PMNT72/28 reveals that both oxygen octahedral rotations and random electric fields play an important role in the frequency dispersion of the dielectric constant for NBT relaxor feroelectric.  相似文献   

8.
The structure and properties of Mn-doped 0.67BiFeO3-0.33BaTiO3 ceramics are systematically investigated with respect to the effects of annealing prior to rapid cooling by quenching in air. Air-quenching induces a change in crystal structure from pseudo-cubic to rhombohedral, with higher quenching temperatures leading to an increased rhombohedral distortion. These structural changes are correlated with the appearance of more well-defined ferroelectric domain configurations. It is shown that the surface preparation procedures for XRD measurements can induce significant changes in the peak profiles, indicating differences in crystal structure between the surface and bulk regions. Frequency dispersion in the temperature-dependent relative permittivity for the as-sintered sample is significantly reduced after quenching, accompanied by enhancement of the Curie point and improved temperature-stability of piezoelectric properties. It is proposed that the formation of defect clusters by A-site cation diffusion during cooling is circumvented by quenching, leading to the observed modification of structural distortion and ferroelectric properties.  相似文献   

9.
0.24Pb(In1/2Nb1/2)O3-0.42Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 transparent ceramics were fabricated by a conventional sintering technique. Through optimization of sintering conditions of calcination and sintering temperatures and time, the obtained ceramics showed high optical transmittance of 53% and 71% at light wavelengths of 1300 and 2000 nm, respectively. The ceramics showed a rhombohedral to tetragonal phase transition at ~120°C and a tetragonal to cubic phase transition at 222°C. These transition temperatures were higher than those of 0.67Pb(Mg1/3Nb2/3)-0.33PbTiO3 ceramics. In addition, the ceramics had a ferroelectric hysteresis loop, a large piezoelectric constant d33 of 407 pC/N, and a planar electromechanical coupling factor kp of 52%. These results suggest that the transparent ceramics may be used as a temperature-stable, linear electro-optic material.  相似文献   

10.
Unquenched and quenched ceramics of 0.85Na0.5Bi0.5TiO3-0.11K0.5Bi0.5TiO3-0.04BaTiO3 have been prepared, and their crystal structure, temperature-dependent ferro-/piezoelectric properties and domain structure have been comparatively investigated. It is shown that quenching process can significantly improve the ferroelectric-relaxor transition temperature (TF-R), which is 130 °C for unquenched ceramics and 198 °C for quenched one. As the result, the thermal stability of ferro-/piezoelectric properties is highly enhanced. These observations are mainly attributed to the quenching induced stable rhombohedral ferroelectric phase and the defect altered domain evolution. This work may deepen the understanding of the effect of quenching on crystal structure, domain structure and their contributions to thermal stability of NBT-based ceramics.  相似文献   

11.
The 0.97(Na0.5K0.5)(Nb1−xSbx)O3-0.03CaZrO3 ceramic with x = 0.09 exhibits a high d33 of 518 pC/N and a strain of 0.13% at 4.0 kV/mm owing to its orthorhombic-pseudocubic polymorphic phase boundary (PPB) structure. However, these values decreased considerably above 90°C owing to its low Curie temperature (TC), indicating that its thermal stability is not sufficient for practical applications. Li2O was added to the specimen with x = 0.11 to improve its thermal stability of the strain and d33 by increasing the TC without degrading the actual d33 and strain values. The 0.97(Li0.04Na0.46K0.5)(Nb0.89Sb0.11)O3-0.03CaZrO3 ceramic, having an orthorhombic-tetragonal PPB structure, exhibits a d33 of 502 pC/N and a strain of 0.16%. This large strain was maintained up to 150°C and the d33 slightly decreased to 475 pC/N at 130°C. Therefore, this lead-free ceramic displays excellent piezoelectric characteristics with improved thermal stability, indicating that it can be applied to piezoelectric actuators.  相似文献   

12.
The structure and electrical properties of perovskite layer structured (PLS) (1?x)Sr2Nb2O7x(Na0.5Bi0.5)TiO3 (SNO‐NBT) prepared by solid‐state reaction method are investigated. The addition of NBT is beneficial to speed up mass transfer and particle rearrangement during sintering, leading to better sinterability and higher bulk density up to 96.8%. The solid solution limit x in the SNO‐NBT system is below 0.03, over which Ti4+ is preferable to aggregate and results in the generation of secondary phase. After the modification by NBT, all SNO‐NBT ceramics have a Curie temperature Tc up to over 1300°C and piezoelectric constant d33 about 1.0 pC/N. The breakthrough of piezoelectricity can mainly be attributed to rotation and distortion of oxygen octahedron as well as higher poling electric field resulting from the improved bulk density. This study not only demonstrates how to improve piezoelectricity by NBT addition, but also opens up a new direction to design PLS piezoceramics by introducing appropriate second phase.  相似文献   

13.
The 0.968[(K0.48Na0.52)]Nb0.95+xSb0.05O3–0.032(Bi0.5Na0.5)ZrO3 [KNNxS–BNZ] lead‐free ceramics with nonstoichiometric niobium ion were fabricated via conventional solid‐state sintering technique and their piezoelectric, dielectric and ferroelectric properties were investigated. When x = 0.010, enhanced piezoelectric properties (d33 ≈ 421 pC/N and kp ≈ 0.47) were obtained due to the construction of rhombohendral—tetragonal phase boundary near room temperature. The KNNxS–BNZ ceramics possesses enhanced Curie temperature (Tc) with improved piezoelectric constant. A large d33 of ~421 pC/N and a high Tc ~256°C can be simultaneously induced in the ceramics with x = 0.010. Especially, good thermal stability was observed in a broad temperature range. The results indicated that our work could benefit development of KNN‐based ceramics and widen their application range.  相似文献   

14.
Lead‐free piezoceramics with the composition (1?x)(K1?yNay)NbO3‐x(Bi1/2Na1/2)ZrO3 (KNyN‐xBNZ) were prepared using a conventional solid‐state route. X‐ray diffraction, Raman spectroscopy, and dielectric measurements as a function of temperature indicated the coexistence of rhombohedral (R) and tetragonal (T) phase, typical of a morphotropic phase boundary (MPB) as the BNZ concentration increased and by adjusting the K/Na ratio. High remnant polarization (Pr=24 μC/cm2), piezoelectric coefficient (d33=320 pC/N), effective piezocoefficient ({d_{33}^*}=420 pm/V), coupling coefficient (kp=48%), and high strain (S=0.168%) were obtained at room temperature, but significant deterioration of Pr, {d_{33}^*}, and kp were observed by increasing from room temperature to 160°C (17.5 μC/cm2, 338 pm/V, and 32%, respectively) associated with a transition to a purely T phase. Despite these compositions showing promise for room‐temperature applications, the deterioration in properties as a function of increasing temperature poses challenges for device design and remains to be resolved.  相似文献   

15.
Defect greatly affects the microscopic structure and electrical properties of perovskite piezoelectric ceramics, but the microscopic mechanism of defect‐driven macroscopic properties in the materials is not still completely comprehended. In this work, K0.5Na0.5NbO3+x mol CuSb2O6 lead‐free piezoelectric ceramics were fabricated by a solid‐state reaction method and the defect‐driven evolution of piezoelectric and ferroelectric properties was studied. The addition of CuSb2O6 induces the formation of dimeric (DC1) and trimeric (DC2) defect dipoles. At low doping concentration of CuSb2O6 (0.5‐1.0 mol%), DC1 and DC2 coexist in the ceramics and harden the ceramics, inducing a constricted double P‐E loop and high Qm of 895 at x=0.01. However, DC2 becomes more dominant in the ceramics with high concentration of CuSb2O6 (≥1.5 mol%) and thus leads to softening behavior of piezoelectricity and ferroelectricity as compared to the ceramic with x=0.01, giving a single slanted P‐E loop and relatively low Qm of 206 at x=0.025. All ceramics exhibit relatively high d33 of 106‐126 pC/N. Our study shows that the piezoelectricity and ferroelectricity of K0.5Na0.5NbO3 ceramics can be tailored by controlling defect structure of the materials.  相似文献   

16.
CuO-doped (1–x)(Na0.2K0.8)NbO3-xBaZrO3 ceramics (0.0 ≤ x ≤ 0.06) were densified at 960°C. The ceramic with x = 0 exhibited a large sprout-shaped strain vs electric-field (S-E) curve and a double polarization vs electric-field (P-E) hysteresis curve, owing to the defect polarization (PD) developed between Cu2+ ions at Nb5+ sites and oxygen vacancies. The sizes of the S-E and P-E loops decreased with increasing x, owing to the decrease in the number of PDs. The ceramic with x = 0.04 displayed small S-E and P-E curves, indicating its small dielectric loss. It exhibited large strain (0.19% at 8.0 kV/mm) at room temperature, which was maintained at 200°C. A similar strain was observed after applying 106 cycles of an electric field (3.0 kV/mm). Hence, this specimen exhibited large strain with excellent thermal and fatigue properties. Moreover, the synthesized multilayer actuator using the ceramic with x = 0.04 showed excellent vibrational properties, making it promising for applications in multilayer piezoelectric actuators.  相似文献   

17.
The mechanosynthesis of piezoelectric perovskite 0.92Pb(Zn1/3Nb2/3)O3–0.08PbTiO3 (PZN–PT) by direct mechanochemical activation of the constituent oxides has been studied by X-ray diffraction (XRD) and transmission electron microscopy (TEM). This and the PbO flux method are the only two procedures that have succeeded in synthesizing this phase, which has recently been shown to present very high electromechanical response. The thermal stability of the single perovskite phase powders has been studied by differential thermal analysis/thermogravimetry and by high-temperature XRD as a function of mechanical activation time and pressure. The phase was found to transform into a pyrochlore type structure at temperatures above 400°C. The transformation presented a significant time dependence, and it was slowed down by increasing mechanical activation time and by the application of pressures by hot pressing. Sintering experiments were accomplished and 85% density, 77% perovskite-phase ceramics were obtained after heating at 1000°C for 1 h. Hot pressing at this temperature failed to increase the percentage of perovskite phase. Results are discussed, and procedures for obtaining dense single-phase PZN–PT-based ceramics with ultrahigh piezoelectricity are proposed.  相似文献   

18.
Lead‐free 0.955K0.5Na0.5Nb1‐zTazO3‐0.045Bi0.5Na0.5ZrO3+0.4%MnO ceramics (abbreviated as KNNTaz‐0.045BNZ+0.4Mn) were prepared by a conventional solid‐state sintering method in a reducing atmosphere (oxygen partial pressure of 1 × 10?10 atm). All ceramics with a pure perovskite structure show the two‐phase coexistence zone composed of rhombohedral and tetragonal phase. Ta5+ ions substitute for Nb5+ ions on the B‐site, which results in a decrease in the R phase fraction in the two‐phase coexistence zone. The R‐T phase transition temperature moves to room temperature due to the substitution of Nb5+ ions by Ta5+ ions. A complex domain structure composed of small nano‐domains (~70 nm) formed inside large submicron domains (~200 nm) exists in KNNTa0.02‐0.045BNZ+0.4Mn ceramics, which can induce a strong dielectric‐diffused behavior and improve the piezoelectric properties. The temperature stability for the reverse piezoelectric constant for the KNNTaz‐0.045BNZ+0.4Mn ceramics can be improved at = 0.02. Excellent piezoelectric properties (d33 = 328 pC/N, and  = 475 pm/V at Emax = 20 kV/cm) were obtained for the KNNTa0.02‐0.045BNZ+0.4Mn ceramics.  相似文献   

19.
(K,Na)NbO3 (KNN) is a promising lead-free ferroelectric/piezoelectric system, to which incorporating BaZrO3 can greatly enhance its piezoelectricity, but the mechanism is not clear. This work was conducted to investigate the phase transition in the BaZrO3-modifed KNN system and its contribution to piezoelectricity enhancement, using thin films with a fixed orientation and high compositional homogeneity fabricated by a sol-gel method. Two ferroelectric-to-ferroelectric phase transitions are revealed, which correspond to monoclinic MC- MA phase transition at higher temperature and rhombohedral-monoclinic MC phase transition at lower temperature. It is difficult to distinguish these phases in KNN-based bulk materials, but their differences are clear when conducting high-resolution X-ray reciprocal space mapping (RSM) on the present thin films. Piezoresponse force microscopy experiments also revealed an interesting finding that local piezoelectricity of monoclinic phases was higher than that of rhombohedral ones in KNN-based thin films. This work could shed insights on the fundamental understandings for the effect of the chemical doping, and offer guidance for property optimization in the KNN-based lead-free piezoelectrics.  相似文献   

20.
For the first time, potassium sodium niobate (KNN)‐based lead‐free piezoelectric ceramic coating with strong piezoelectric response was fabricated on stainless steel substrates by thermal spray process, after introducing NiCrAlY and yttria‐stabilized zirconia (YSZ) intermediate layers. A large effective piezoelectric coefficient (d33) of 125 pm/V was obtained with the thermal‐sprayed KNN‐based ceramic coating on the steel substrates. The mechanisms of improving the structure and enhancing the properties of the KNN‐based piezoelectric ceramic coatings by introducing the intermediate layers were analyzed. Ultrasonic transducers were designed and fabricated from the KNN‐based coatings directly formed on a steel plate structure, and the feasibility for generation and detection of ultrasonic waves for structural health monitoring using the thermal‐sprayed lead‐free piezoelectric ceramic coating was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号