首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
高碳铬铁无渣脱碳法可避免有毒铬渣的排放,利用微波场可快速加热粉状物料的特性,在高碳铬铁粉中配加一定比例的碳酸钙粉,可实现高碳铬铁粉快速固相脱碳.实验结果表明:配加一定比例的碳酸钙粉,不会影响内配碳酸钙高碳铬铁粉混合物料的微波加热特性;提高混合物料的脱碳摩尔比、微波加热温度和保温时间,有利于高碳铬铁粉的深度脱碳,但相应加剧脱碳铬铁粉的氧化程度.合适的固相脱碳条件为:脱碳摩尔比1∶1.0~1∶1.4,微波加热温度1100℃,保温脱碳时间60 min.在上述条件下可使碳质量分数为8.16%的高碳铬铁粉脱碳至3.91%~1.71%,脱碳率为52.08%~79.04%.   相似文献   

2.
郝赳赳  陈津  郭丽娜 《特殊钢》2014,35(5):19-22
研究了900~1200℃ 0~60 min微波加热和普通马弗炉加热两种方式,用固体脱碳剂碳酸钙(96.04%CaCO3)对高碳铬铁粉(/%:55.79Cr,32.76Fe,8.16C,2.34Si)脱碳的影响。结果表明,试验条件下,微波加热高碳铬铁粉的固相脱碳效果较常规加热明显,而且常规加热时物料氧化程度严重,微波加热混合物料至1100℃ 60 min,铬铁粉脱碳率为79.04%,获得较好脱碳效果的同时,避免了物料的过分氧化。  相似文献   

3.
 碳酸钙粉热分解产生的CO2对高碳锰铁粉固相脱碳具有很好的脱碳作用,但脱碳过程中物料电磁性能的变化对微波加热的影响很大。 将高碳锰铁粉与碳酸钙粉按质量比1∶1均匀混合,在微波场中加热进行固相脱碳反应,脱碳温度分别为900、1000、1100、1200℃,且各保温脱碳60min。用矢量网络分析法测试试样的电磁性能。结果表明,高碳锰铁粉脱碳前后的电磁性能变化很大。脱碳物料的εr′在7.00~10.00范围内,εr″≈0.05。脱碳物料的μr′≈1.00,μr″≈0.00。温度为900和1200℃时,脱碳物料的电磁性能相近。高碳锰铁粉加热到1000和1100℃时,脱碳物料的tanδε和tanδμ最大,微波加热效果良好。  相似文献   

4.
采用微波加热和常规加热对硅锰粉和巴西粉锰的脱硅反应进行了动力学行为研究,以巴西粉锰为脱硅剂,与硅锰粉中的硅发生氧化还原反应.微波加热和常规加热分别加热到不同温度并保温一定时间,测定产物中硅含量并计算固相脱硅反应的表观活化能.实验表明:单一和混合料均可在微波场中快速升温.随着温度的升高和保温时间的延长,两种加热方式脱硅率均随之提高,在相同实验条件下,微波加热的脱硅率和反应速率均高于常规加热,微波加热可以提高固相脱硅率;微波加热固相脱硅反应的限制性环节为扩散环节,其表观活化能为102.93 kJ·mol-1,常规加热脱硅反应的表观活化能为180 kJ·mol-1,说明微波加热能改善固相脱硅的动力学条件,提高固相脱硅反应速率,降低脱硅反应的活化能.   相似文献   

5.
为了研究铁碳合金薄带固相脱碳反应的动力学。试验以Ar- H2- H2O为脱碳气氛,在可控气氛管式炉内对Fe- C合金薄带进行脱碳。把铁碳合金薄带放入加热场中加热到1020、1080和1140℃,并分别保温脱碳0、10、30、50、60、70、80和90min。结果表明,碳向反应界面的扩散是脱碳反应的限制性环节,脱碳温度的升高和脱碳保温时间的延长均有利于提高脱碳量,而且提高反应温度有助于提高脱碳反应速率。铁碳合金薄带固态脱碳反应近似为一级反应,脱碳反应表观活化能为144.9 kJ/mol。  相似文献   

6.
以锰硅粉与巴西粉锰矿的脱硅反应为体系,研究了微波加热条件下粒度对动力学参数的影响规律,根据试验结果推导出固相脱硅反应在扩散为控速环节的动力学方程,并得到反应的动力学参数与反应物粒度的函数关系式。结果表明:随着原料粒度的减小,微波加热物料升温速率减慢。微波加热条件下扩散是固相脱硅反应的限制性环节,并推导出固相脱硅反应动力学方程1-2/3a-(1-a)2/3=kt。随着反应物粒度的减小,固相脱硅反应的速率常数增大,而表观活化能和指前因子均减小,且速率常数的对数、表观活化能和指前因子的对数均与反应物粒径的倒数呈线性关系。此外,反应物粒度是通过摩尔表面积、摩尔表面能和摩尔表面熵影响固相脱硅反应的动力学参数。  相似文献   

7.
通过对比微波场中高碳锰铁粉和高碳铬铁粉的升温特性,分析了影响物料升温特性的因素。结果表明,微波场中高碳锰铁粉的升温效果优于高碳铬铁粉,高碳锰铁粉与高碳铬铁粉在微波场中的升温曲线均可分为2个阶段,高碳锰铁粉的平均升温速率为70.9和12.4℃·min-1,而高碳铬铁粉的平均升温速率为20.0和8.33℃·min-1;2.450GHz时,高碳铬铁粉的介电损耗较大,而高碳锰铁粉的磁损耗较大;反射损耗计算表明,高碳锰铁粉有较高的微波吸收率。  相似文献   

8.
为开发洁净、高效的高碳铬铁冶炼新工艺,对微波加热铬矿球团冶炼高碳铬铁进行试验研究,探明配碳量、配渣对铬回收率的影响。结果表明,微波加热铬矿球团100~120 min,可达到高碳铬铁冶炼所需的1 550~1 620 ℃,得到符合国标要求的高碳铬铁,铬回收率超过94%。当配碳系数为1.1,加入硅石使炉渣R=SiO2/(MgO+Al2O3)=0.55时,冶炼效果最好。当炉渣R值较低时,合金铬含量及回收率均明显下降,可以通过延长微波加热时间进行改善。  相似文献   

9.
为了研究高碳铬铁合金在浇注过程添加硅铁粉和铝后固相显微结构及破碎性能变化,在0.2 t多功能炼钢中试炉重熔某铁合金公司生产的高碳铬铁,浇注时分别添加硅铁粉和铝,分析重熔的常规高碳铬铁、添加铝及硅铁粉的高碳铬铁的固相显微结构,并将样品经颚式破碎机破碎。结果表明,高碳铬铁显微结构主要由(Cr,Fe)7C3固态相和(Cr,Fe)7Si固态相组成,有部分TiN、MnS和Al2O3夹杂物析出,常规高碳铬铁中未发现Al2O3夹杂物,而添加硅铁粉和铝的高碳铬铁中均析出了Al2O3及TiN夹杂物;添加铝的高碳铬铁组织致密,气孔率小,而常规高碳铬铁存在大量裂纹和孔洞,组织疏松,添加硅铁粉的高碳铬铁介于两者之间;经颚式破碎机破碎后,常规高碳铬铁、添加硅铁粉的高碳铬铁和添加铝的高碳铬铁破碎后粉末率分别为13.2%、11.7%和9.5%。  相似文献   

10.
 为了研究1 mm铁碳合金薄带气-固反应脱碳动力学以及探索不同温度对薄带脱碳效果的影响。以初始碳质量分数为4.2%、厚度为1 mm的铁碳合金薄带为研究对象,在气体流量为400 mL/min、[pH2O/pH2]为0.85的Ar-H2-H2O混合气氛条件下,以高温气-固反应形式开展脱碳试验研究。结果表明,提高脱碳温度可以明显提高脱碳效果,在1 413 K温度条件下脱碳30 min可以将碳脱至0.12%。宏观脱碳反应近似为表观一级反应,脱碳反应表观活化能为157.9 kJ/mol。脱碳反应初期主要受控于表面化学反应,后期碳在薄带内部的扩散成为主要限制性环节。  相似文献   

11.
The solid-phase decarburization of high-carbon ferromanganese powders (HCFPs) was investigated using calcium carbonate as the decarburizer by microwave heating and conventional heating methods to explore the differences of microwave heating and conventional heating. Experimental results show that HCFPs containing calcium carbonate were heated up to 900, 1000, 1100, and 1200 °C and held for 60 min for decarburization by microwave heating at decarburization ratios of 76. 69%, 82.90%, 84.11%, and 85.75%, respectively. These ratios arc higher than the decarburization ratios used for conventional heating under the same experimental conditions. The microwave heating can significantly improve decarburization ratio. This indicates the microwave heating field features a non-thermal effect, which in turn, visibly enhances the carbon diffusion ability of HCFPs. It also improves the kinetic conditions of solid-phase decarburization.  相似文献   

12.
 Thermodynamic conditions of reactions between high-carbon ferromanganese powders and gas decarbonizers like O2, CO2 and water vapor were studied by thermodynamic calculation. In O2, CO2 and water vapor atmosphere, high-carbon ferromanganese powders were decarburized in a fluidized bed. When the temperature is respectively higher than 273, 1226 and 1312 K, the gas-solid decarburization reaction will occur between ferromanganese carbide on the surface of the high-carbon ferromanganese powders and different gas decarbonizers. Since metal manganese is easy to be oxidized by O2, CO2 or water vapor, the decarburization reaction will transfer into a solid-solid phase reaction of ferromanganese carbide and ferromanganese oxide, promoting external diffusion of carbon to achieve a further decarburization of high-carbon ferromanganese powders.  相似文献   

13.
为对H2/H2O气氛下Fe?C合金薄带的气固反应脱碳进行动力学研究,在保证快速脱碳而铁不氧化的前提下,利用可控气氛高温管式脱碳炉,研究了不同的脱碳温度、薄带厚度、脱碳时间对Fe?C合金薄带脱碳效果的影响。结果表明延长脱碳时间、提高脱碳温度、减少薄带厚度均可提高脱碳效果。当脱碳温度为1353 K,在脱碳过程中,薄带可以分成明显的3层,由表面到内部依次是完全脱碳层、部分脱碳层和未脱碳层。完全脱碳层的组织为铁素体,此部分碳含量最低;部分脱碳层由铁素体、渗碳体和少量石墨相组成,未脱碳层由珠光体和大量石墨相组成,此部分碳含量最高。脱碳层的厚度随着脱碳时间的延长而增加,脱碳层的厚度y与时间t平方根满足良好的线性关系,可用函数y =kt0.5描述,碳原子扩散所需扩散激活能为122.36 kJ?mol?1,脱碳反应为表观一级反应,表观活化能为153.79 kJ?mol?1。   相似文献   

14.
采用矢量网络参数法在1~18 GHz频段内分别对电阻炉、空气和水浴中冷却的高碳铬铁粉的电磁性能进行研究.随着冷却速率的提高,高碳铬铁粉的相对复介电常数实部和虚部在大多数频率下均增大.空冷和水冷粉料的相对复介电常数虚部在12~18 GHz频率范围内因极化弛豫而产生较大的峰值.同一频率下相对复磁导率实部随冷却速率变化的趋势与相对复介电常数相反.水冷粉料的相对复磁导率虚部在3~5 GHz以外的频段内均大于另两组冷却粉料,且三组粉料的虚部在低频及高频条件下均具有峰值.在2.45 GHz的微波加热频率下,炉冷、空冷及水冷粉料的反射损耗分别为-2.30、-2.15和-2.07 d B.水冷粉料的介电损耗因子及磁损耗因子最大,微波场下具有最佳的升温速率与反应效果.   相似文献   

15.
 为了对CO2和H2O两种气氛的脱碳效果进行对比,将碳质量分数约为4.2%的Fe-C合金薄带分别在两种气氛中进行脱碳处理。通过热力学分析结合试验保证碳被脱除且铁不氧化的气氛条件分别为:Ar-CO-CO2(气体流量为850 mL/min,CO的体积分数为25%,$P_{CO_2}$/(PCO+$P_{CO_2}$)为0.26),Ar-H2-H2O(气体流量为500 mL/min,H2体积分数为15%,水浴温度为313 K)。当脱碳温度为1 413 K时,Ar-H2-H2O气氛下,脱碳时间为50 min时,脱碳后的平均碳质量分数为0.6%,Ar-CO-CO2气氛下,脱碳时间为70 min时,脱碳后的平均碳质量分数为0.92%。当脱碳时间相同时,Ar-H2-H2O的脱碳效果优于Ar-CO-CO2的脱碳效果,由于随着脱碳反应的进行薄带表面与氧化气体反应达到平衡,Ar-H2-H2O反应平衡时薄带的碳活度要低于Ar-CO-CO2气氛条件的碳活度,导致Ar-H2-H2O气氛条件下薄带的碳浓度梯度高于Ar-CO-CO2气氛条件,进而导致Ar-H2-H2O气氛条件的扩散通量大,脱碳效果好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号