首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
宋志平  洪津  乔延利 《光学精密工程》2010,18(11):2325-2331
理论分析和实验研究了强度调制偏振光谱仪系统参数的设计。介绍了强度调制偏振光谱仪的结构原理,分析了调制器设计、光谱仪选型与系统指标间的匹配关系。给出了一个完整的设计实例,以搭台方式建立了强度调制偏振光谱仪原理实验装置,并对平行光管直接输出的光和经起偏器起偏后输出的光进行了偏振光谱测量和分析。结果表明:在有效测量波段内(525~700nm),以卤钨灯为光源的平行光管直接输出光的偏振度值10%;经过线偏振器起偏后输出光的偏振度值接近100%,与理论分析的结果一致,验证了基于强度调制技术设计偏振光谱仪方法的可行性。  相似文献   

2.
为消除体相位调制器工作过程中热效应对偏振调制测距精度的影响,提出了利用波导式相位调制器替代体相位调制器的全光纤波导式偏振调制测距方法.对波导式偏振调制测距系统进行原理分析,利用琼斯矩阵得出传输过程中测量光偏振态的变化规律,建立调制信号频率、偏振光强度与被测距离的函数关系.然后,进行了直波导相位调制器特性测试,验证其半波...  相似文献   

3.
研制了一种结构简单、稳定性好的可见光波段可调偏振度光源,用来验证偏振光谱强度调制(PSIM)实验系统设计的正确性。该光源内部安装有两块K9玻璃组成的玻璃片堆,通过改变玻璃片堆的倾角来调整输出的部分偏振光的偏振度。理论推导了二者的关系,得到了可调偏振度源输出光的偏振度计算方法。根据PSIM系统的实现原理,搭建了验证PSIM性能的实验装置,对可调偏振度源输出的不同偏振度谱进行了测量。实验结果表明:在PSIM实验装置的有效工作波段范围内,可调偏振度源输出光的理论偏振度值与PSIM实验装置测得结果的误差在1%以内,验证了可调偏振度源及PSIM实验装置设计的正确性。该装置有望成为标准偏振光源,用于偏振光谱测量装置的精确标定。  相似文献   

4.
空间外差光谱仪系统设计   总被引:12,自引:3,他引:9  
围绕空间外差光谱仪系统参数设计进行了理论分析和实验研究。介绍了空间外差光谱仪系统的基本结构和原理,并针对其光学系统设计,详述了系统的主要指标:光谱分辨率极限、分辨能力、光谱范围与关键光学器件:光栅、探测器、成像系统等参数的匹配关系。给出了一个完整的系统参数设计实例,并根据光学系统参数对干涉图进行了理论仿真。以搭台的方式建立空间外差光谱仪原理试验装置,并进行了典型光谱实验验证,系统检测结果表明光谱分辨能力在591 nm达到了17 700,光谱范围为574~591 nm。实验结果与仿真结果比较还表明,系统的光谱范围、光谱分辨率等指标达到了设计要求,验证了设计方法的可行性。  相似文献   

5.
空间外差光谱仪的平场波长定标实验与数据处理   总被引:1,自引:1,他引:0  
空间外差光谱技术综合了光栅衍射与空间调制干涉两种技术特点.由于干涉仪胶合与光栅刻划过程中存在误差,使得系统平场与理论设计值存在偏差.本文探讨了空间外差光谱仪系统平场定标的原理,通过干涉条纹频率公式推导出了系统平场定标的基本公式,设计了可调谐激光导人消散斑积分球定标方法及定标装置.针对中科院安徽光机所研制的用于大气CO2精细吸收光谱(1 575 nm吸收带)探测的空间外差光谱仪样机开展了平场定标实验.定标结果表明,仪器的实际平场波长比理论设计值向短波方向漂移了约0.05 nm,满足仪器设计要求.  相似文献   

6.
研究了激光制导中弹体旋转或光场时变与光速偏振态间的关系,在对偏振光信号特征参数分析的基础上,介绍了一种动态检测光偏振状态的方法,采用特定的相位延迟器及差和比的数据处理方式,可以消除测量装置与偏振光相对旋转的影响,并利用琼斯矩阵法分析了这一工作原理.研制的测量装置能实时给出偏振光的旋向和椭圆度.实验结果表明,相对旋转对偏振态测量的影响确实可以消除.  相似文献   

7.
常用的偏振成像理论模型大多基于理想偏振片假设,即偏振片的消光比为无穷大且主方向已知,而实际偏振片的非理想性会对偏振成像系统的测量精度产生明显的影响,为降低这种影响,对考虑偏振片非理想性的偏振成像模型进行研究。以基于斯托克斯矢量的偏振成像模型为基础,通过分析实际偏振片对入射光偏振态的改变,提出了一种考虑偏振片非理想性的可见光偏振成像修正模型,给出了考虑实际偏振片性能及主方向误差的偏振度、偏振角修正公式。利用分时偏振成像系统对线偏振光的偏振度进行测量,实验结果表明:当偏振片消光比为100:1时,理想模型的线偏振光偏振度测量的平均相对误差为5.53%,修正模型的偏振度测量的平均相对误差降低到3.62%。应用该修正模型可在使用低消光比偏振片时达到与高消光比偏振片相当的偏振度测量精度,使偏振成像系统能够拥有更大视场,成本降低。  相似文献   

8.
综述了过去10年中德国BESSY同步辐射装置在软X射线偏振测量方面所做的工作。在BESSY同步辐射装置中,有10条椭圆波动器光束线,这可使同步加速器辐射的偏振态从线偏振光(水平或者垂直)转变为左旋或右旋圆偏振光。由于很多偏振敏感实验(例如,MCD光谱测量)需要归一化量,因此对偏振度进行量化非常重要。对于偏振实验,即对光的偏振态测量来说,需要两个光学元件分别起相位片和检偏器作用。因此,专门研制了在软X射线区有透射和反射功能的多层膜,并对其做了优化。通过使多层膜参数(周期,厚度比)与构成材料的吸收边相匹配,即可获得共振加强的偏振灵敏度。由此可知,基于多层膜的偏振测量与这些偏振光学元件工作波长处性能测量密切相关,文中对仪器的设置和测试结果做了介绍,同时给出了磁性薄膜或光活化物质的磁光光谱测量和偏振测量的示例(法拉第和克尔效应)。  相似文献   

9.
空间应用干涉成像光谱仪的研究   总被引:4,自引:3,他引:1  
干涉成像光谱技术是空间目标探测的一项新技术,近年来发展迅速。按调制方式干涉成像光谱仪可以分为时间调制、空间调制和联合调制三种。介绍各类干涉成像光谱仪的原理及其发展,并给出了几种典型的干涉成像光谱仪,尤其是LASIS相机,近年来成为干涉成像光谱仪研究的新热点。  相似文献   

10.
研究了基于中阶梯光栅多级衍射特性实现谱段展宽的宽谱段空间外差干涉光谱仪的基础理论和系统设计方法。阐述了宽谱段空间外差干涉光谱仪的特点,分析了仪器性能指标(光谱分辨率、光谱范围、视场、信噪比、衍射级次等)与初始光学和电子学参数(光栅、视场棱镜、成像系统、探测器等)之间的理论关系。然后,设计并搭建了宽谱段空间外差干涉光谱仪实验平台,该系统的理论光谱分辨率为0.173cm-1@16 950cm-1,光谱区为500~700nm。最后,给出了激光(543.5nm、632.8nm)、Na灯(589nm、589.6nm)、Hg灯(576.96nm、579.07nm)光源的宽谱段实验结果,其复原光谱的平均波数采样间隔为0.17cm-1;光谱复原过程中采用三角切趾函数,平均光谱分辨率为0.39cm-1。实验结果与理论设计符合良好,且复原谱各级次之间的对应关系与光栅方程确定的理论关系完全符合。  相似文献   

11.
设计了应用于高精度干涉测量系统的双向差动相位解调法,利用锁相环的分频特性对测量信号进行降频处理,增加计数脉冲的数量,再结合双向差动相位解调法对信号进行鉴相,从而提高测量分辨力.在He-Ne双频激光外差偏振干涉信号处理实验装置中进行了实验,证明了该方法能够提高测量精度.  相似文献   

12.
针对激光外差干涉仪测量过程中测量镜随被测对象旋转而导致的位移测量误差,提出了一种基于卡尔曼滤波的激光外差干涉位移测量补偿方法。根据测量镜转角和测量光束光斑位置变化对应关系,利用位置敏感探测器(PSD)和位置电压信号卡尔曼滤波方法测得降噪后的光斑位置变化,从而获得更为准确的转角测量结果,最后根据转角与位移的解耦数学模型利用测得的转角进行位移补偿。为验证滤波算法和位移补偿方法的可行性和有效性,搭建激光外差干涉测量实验装置,分别进行光斑位置稳定性测量实验、角度测量验证实验和激光外差干涉位移测量补偿实验。实验结果表明:经卡尔曼滤波降噪后系统装置测得的光斑位置抖动标准差从0.52μm降至0.18μm,测量的转角与索雷博六自由度转台的转角偏差在±1.38×10-4°内,对M-531. DD线性导轨200 mm量程内的位移和转角进行测量,将测得的转角进行位移补偿后,系统的位移测量结果与M-531. DD线性导轨位移的标准差从1.55μm减小到0.29μm。  相似文献   

13.
针对实验室偏振光谱测量系统短波红外起偏效应大、测量偏差大的问题,建立了系统目标斯托克斯校正模型,提出了该模型中相关系数的测量方法,从而实现了系统偏振效应的精密校正。首先分析了实验室常用的低成本分时偏振光谱测量系统存在的主要问题及起偏效应的来源。然后根据偏振传输理论,将系统中起偏效应较大的波谱仪等效为检偏系统,建立了目标偏振信息的校正模型,并通过与理想模型的对比验证了模型的正确性。最后针对本测量设备,为提高校正系数的测量精度,在解析法的基础上提出了一种更精确的拟合法。实验结果表明,本方法的校正精度高于0.5%,满足实验室中对目标偏振信息处理的精度要求,对偏振光谱测量系统的研制和标定具有指导意义。  相似文献   

14.
为了标定分焦平面偏振图像传感器的信噪比,设计了分焦平面偏振图像传感器各通道信噪比标定实验。对分焦平面偏振图像传感器信噪比参数对偏振角度测量结果的影响程度、信噪比标定原理、标定实验流程等进行了研究。根据分焦平面偏振传感器的结构和数字图像传感器的数学模型得到信噪比的标定原理。在不同信噪比、不同入射角度线偏振光情况下,对偏振角度测量结果进行了仿真。然后,根据标定原理设计标定实验的装置结构和实验流程。最后,进行实际标定并对实验数据进行了分析。信噪比-偏振角度测量精度仿真结果表明:分焦平面偏振图像传感器的信噪比越大,偏振角度测量精度越高,且入射偏振光角度也会影响测量精度。分焦平面偏振图像传感器各通道信噪比参数的实际测试结果表明:标定值与指标值相差不超过0.55 dB。实验结果证明,该方法是准确有效的,能够较好地完成分焦平面偏振图像传感器各通道信噪比的标定任务。  相似文献   

15.
为了有效利用全天域的偏振光信息,探究仿生偏振光导航机理,设计了偏振视觉传感器。介绍了基于四相机的偏振视觉传感器及其标定方法,推导了冗余配置下偏振态的最小二乘估计算法。分析了基于一阶瑞利散射模型的天空光偏振模式,将太阳方向矢量的最优估计问题转化为求解矩阵的特征向量问题,推导出了基于天空光偏振模式的定位定向算法。最后,设计了静态实验与转动实验,对理论分析结果进行了验证。实验结果显示:测量的天空光偏振模式与瑞利散射模型相一致,并可从中成功提取太阳方向矢量。静态实验测量的太阳天顶角的最大误差约为0.4°,误差标准差为0.14°;基于1h对天空偏振光的观测数据实现的定位误差为68.6km。转动实验(转动两周)得到的最大定向误差约为0.5°,误差标准差为0.28°。研究结果揭示了生物利用偏振光导航的机理,为仿生偏振光导航的应用提供了理论依据。  相似文献   

16.
分析了基于法拉第调制的线偏振光旋转角检测技术的基本原理,证明输出信号基频分量的振幅与偏振面旋转角θ成正比,仿真发现基频分量远小于零频和二倍频分量,需采用锁相放大技术进行基频信号提取。实验采用ZF7玻璃和TG28晶体作为旋光介质,分别制作了标准旋转角产生装置和偏振面调制装置,并结合锁相放大器搭建偏振光旋转角检测系统。实验结果证明,当法拉第调制频率为1.45kHz、调制幅度为0.035rad时,该方法可以实现6.3×10-8rad的微小偏转角检测。  相似文献   

17.
为了解决多通道型偏振成像仪的偏振定标问题,提出了一种基于积分球无偏光源的偏振定标方法。通过研究偏振光束与光学器件的相互作用,推导出多通道型偏振成像仪的矢量辐射传输模型,确定了需要标定的参数。运用无偏光源标定系统的偏振效应,基于矢量辐射传输模型对中心视场绝对辐射定标系数、光学镜头起偏度和系统低频相对透过率等关键参数进行了标定,通过分析标定结果求解了系统全视场的穆勒矩阵。最后,使用可调偏振度光源验证了仪器典型视场的偏振定标精度。研究结果表明,基于无偏光源的偏振定标方法可以有效提高多通道型偏振成像仪的偏振定标效率;经偏振定标后仪器在目标偏振度低于20%时的偏振测量误差小于1%,满足大气气溶胶测量精度的要求。  相似文献   

18.
全光纤可测量任意反射面的速度干涉仪,对强动载下的界面运动速度测量具有重要意义.基于传统光纤速度干涉仪的特点,设计了一种新型全光纤速度测量系统.该系统不仅能消除延迟线圈的分布式相位调制噪声,还能得到高条纹对比度的干涉信号.采用偏振分束器替代耦合器,应用琼斯矩阵法分析推导了偏振分束器能够消除系统中的非相干光束原理.振动台表面速度测量的实验结果表明,该系统能得到89.1%条纹对比度的干涉信号,大幅提高系统信号噪声比,并且相比Levin结构的传统干涉仪能抑制延迟光纤线圈的相位噪声超过30 dB.  相似文献   

19.
天空偏振光测量系统的设计   总被引:6,自引:3,他引:3  
根据一束光的偏振特性可以由斯托克斯矢量来表征的原理,设计搭建了一种天空偏振光测量系统。该系统由计算机、赤道仪、光纤光谱仪和配备了可旋转偏振片的改进式天文望远镜组成,在400~900 nm的光谱分辨率为1.4 nm。赤道仪经过标定后可以实现0~180°方位角以及0~90°高度角的调整,角度分辨率为2.5°。系统的光学全视场为4.5°,使用该系统可以测量全天空的光强辐射度、偏振度以及偏振方位角。由标定结果可知,系统光强测量的重复率在450~500 nm为99%,在500~900 nm为(95±3)%;在400~750 nm偏振度测量误差<2%,在475 nm处达到1.2%。偏振方位角的测量误差<2°。  相似文献   

20.
偏振编码是利用光信号的偏振态承载信息进行编码,旨在解决高速光纤通信中非线性效应和偏振模色散等问题。本文提出了基于弹光调制器的偏振态测量方法,该方法不仅保留了原有弹光调制器偏振测量的优点,并且克服了现有方法无法用阵列探测器有效采集信息及调制频率高等缺点,同时给出了Matlab模拟仿真及实验验证方案。理论分析、模拟仿真及实验验证了该方法的可行性。测量结果的误差分析表明,该方法能满足测量要求,这为偏振编码在高速光纤通信中的应用创造了条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号