首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conversion reaction electrodes offer a high specific capacity in rechargeable batteries by utilizing wider valence states of transition metals than conventional intercalation‐based electrodes and have thus been intensively studied in recent years as potential electrode materials for high‐energy‐density rechargeable batteries. However, several issues related to conversion reactions remain poorly understood, including the polarization or hysteresis during charge/discharge processes. Herein, Co3O4 in Na cells is taken as an example to understand the aforementioned properties. The large hysteresis in charge/discharge profiles is revealed to be due to different electrochemical reaction paths associated with respective charge and discharge processes, which is attributed to the mobility gap among inter‐diffusing species in a metal oxide compound during de/sodiation. Furthermore, a Co3O4–graphene nanoplatelet hybrid material is demonstrated to be a promising anode for Na rechargeable batteries, delivering a capacity of 756 mAh g?1 with a good reversibility and an energy density of 96 Wh kg?1 (based on the total electrode weight) when combined with a recently reported Na4Fe3(PO4)2(P2O7) cathode.  相似文献   

2.
Much attention has been paid to increase the energy density of Li‐ion batteries, in order to fulfill the requirements of electric vehicles and grid‐scale energy storage. While for anodes various options are available, this is not at all the case for cathodes. In this context, the inexpensive and environmentally benign iron sulfides have been investigated as cathode materials due to the remarkably high capacity based on the conversion reaction. Here, the preparation of FeS nanodots accommodated in porous graphitic carbon nanowires is reported via a combination of electrospinning technique and biomolecular‐assisted hydrothermal method. These materials exhibit excellent electrochemical performances also as cathode materials, with energy densities even higher than the current LiCoO2 intercalation cathode. Moreover, key problems of conversion reaction, such as the low degree of reversibility, large polarization are far‐reachingly mitigated.  相似文献   

3.
Considering the ever‐growing climatic degeneration, sustainable and renewable energy sources are needed to be effectively integrated into the grid through large‐scale electrochemical energy storage and conversion (EESC) technologies. With regard to their competent benefit in cost and sustainable supply of resource, room‐temperature sodium‐ion batteries (SIBs) have shown great promise in EESC, triumphing over other battery systems on the market. As one of the most fascinating cathode materials due to the simple synthesis process, large specific capacity, and high ionic conductivity, Na‐based layered transition metal oxide cathodes commonly suffer from the sluggish kinetics, multiphase evolution, poor air stability, and insufficient comprehensive performance, restricting their commercialization application. Here, this review summarizes the recent advances in layered oxide cathode materials for SIBs through different optimal structure modulation technologies, with an emphasis placed on strategies to boost Na+ kinetics and reduce the irreversible phase transition as well as enhance the store stability. Meanwhile, a thorough and in‐depth systematical investigation of the structure–function–property relationship is also discussed, and the challenges as well as opportunities for practical application electrode materials are sketched. The insights brought forward in this review can be considered as a guide for SIBs in next‐generation EESC.  相似文献   

4.
Coordination compounds such as Prussian blue and its analogues are acknowledged as promising candidates for electrochemical sodium storage owing to their tailorable and open frameworks. However, a key challenge for these electrode materials is the trade‐off between energy and power. Here, it is demonstrate that Prussian white (Na3.1Fe4[Fe(CN)6]3) hierarchical nanotubes with fully open configurations render extrinsic Na+ intercalation pseudocapacitance. The cathode exhibits a capacity up to 83 mA h g?1 at an ultrahigh rate of 50 C and an unprecedented cycle life over 10 000 times for sodium storage. In situ Raman spectroscopy together with in situ X‐ray diffraction analysis reveal that intercalation pseudocapacitance enables full reaction of N‐FeIII/FeII sites in Prussian white with a negligible volume expansion (<2.1%). The discovery of surface‐controlled charge storage occurring inside the entire bulk of intercalation cathodes paves a new way for developing high power, high energy, and long life‐span sodium‐ion batteries.  相似文献   

5.
The emergence of nanomaterials in the past decades has greatly advanced modern energy storage devices. Nanomaterials can offer high capacity and fast kinetics yet are prone to rapid morphological evolution and degradation. As a result, they are often hybridized with a stable framework in order to gain stability and fully utilize its advantages. However, candidates for such framework materials are rather limited, with carbon, conductive polymers, and Ti‐based oxides being the only choices; note these are all inactive or intercalation compounds. Conventionally, alloying‐/conversion‐type electrodes, which are thought to be electrochemically unstable by themselves, have never been considered as framework materials. This concept is challenged. Successful application of conversion‐type MnO nanorod as a anode framework for high‐capacity Mo2C/MoOx nanoparticles has been demonstrated in sodium‐ion batteries. Surprisingly, it can stably deliver 110 mAh g?1 under extremely high rate of 8000 mA g?1 (≈70 C) over 40 000 cycles with no capacity decay. More generally, this is considered as a proof of concept and much more alloying‐/conversion‐type materials are expected to be explored for such applications.  相似文献   

6.
Sodium ion batteries (SIBs) are promising candidates for large-scale energy storage owing to the abundant sodium resources and low cost. The larger Na+ radius (compared to Li+) usually leads to sluggish reaction kinetics and huge volume expansion. One of the efficient strategies is to reduce the size of electrode materials or the components of electrolytes to a suitable scale where size effect begin to emerge, leading to the improved or varied thermodynamics, kinetics, and mechanisms of sodium storage. However, only a few systematic reviews address size effects in SIBs, which requires further attention urgently. Herein, after a brief discussion of the general size effect, the size-related kinetics, thermodynamics (equilibrium voltage and morphology), and sodium storage mechanisms (phase transition, conversion reaction, interfacial, and nanopore storage) of electrode materials are presented. The size effect on liquid, polymer, and inorganic solid-state electrolytes are discussed as well, including the size of solvent molecules, Na salts, and inorganic fillers. Finally, neutral and adverse size effects are discussed, and some useful strategies are proposed to overcome them. The deep insights into the size effect will provide instructive guidelines for developing SIBs and other new energy storage systems.  相似文献   

7.
Rechargeable all‐solid‐state batteries will play a key role in many autonomous devices. Planar solid‐state thin film batteries are rapidly emerging but reveal several drawbacks, such as a relatively low energy density and the use of highly reactive metallic lithium. In order to overcome these limitations a new 3D‐integrated all‐solid‐state battery concept with significantly increased surface area is presented. By depositing the active battery materials into high‐aspect ratio structures etched in, for example silicon, 3D‐integrated all‐solid‐state batteries are calculated to reach a much higher energy density. Additionally, by adopting novel high‐energy dense Li‐intercalation materials the use of metallic Lithium can be avoided. Sputtered Ta, TaN and TiN films have been investigated as potential Li‐diffusion barrier materials. TiN combines a very low response towards ionic Lithium and a high electronic conductivity. Additionally, thin film poly‐Si anodes have been electrochemically characterized with respect to their thermodynamic and kinetic Li‐intercalation properties and cycle life. The Butler‐Vollmer relationship was successfully applied, indicating favorable electrochemical charge transfer kinetics and solid‐state diffusion. Advantageously, these new Li‐intercalation anode materials were found to combine an extremely high energy density with fast rate capability, enabling future 3D‐integrated all‐solid‐state batteries.  相似文献   

8.
SnSx (x = 1, 2) compounds are composed of earth‐abundant elements and are nontoxic and low‐cost materials that have received increasing attention as energy materials over the past decades, owing to their huge potential in batteries. Generally, SnSx materials have excellent chemical stability and high theoretical capacity and reversibility due to their unique 2D‐layered structure and semiconductor properties. As a promising matrix material for storing different alkali metal ions through alloying/dealloying reactions, SnSx compounds have broad electrochemical prospects in batteries. Herein, the structural properties of SnSx materials and their advantages as electrode materials are discussed. Furthermore, detailed accounts of various synthesis methods and applications of SnSx materials in lithium‐ion batteries, sodium‐ion batteries, and other new rechargeable batteries are emphasized. Ultimately, the challenges and opportunities for future research on SnSx compounds are discussed based on the available academic knowledge, including recent scientific advances.  相似文献   

9.
The ever-rising concerns with regards to energy shortages and climate change have made the search for clean and renewable energy sources a pressing priority for the sustainable development of societies. Although, conventional precious metal-based catalysts such as platinum, iridium, and ruthenium are able to efficiently catalyze the conversion of chemical to electrical energy, they are often very costly, scarce, and suffer from poor stability, hence impeding their widespread applications. The limitations of the current state-of art catalysts have propelled tremendous efforts in search for alternative catalysts. Notably, transition metal dichalcogenides (TMDs) have spurred much enthusiasm because of their natural abundance, low cost, and remarkable catalytic activity. Numerous studies have recounted that doping can tune the properties of TMDs and that vanadium dopants reportedly improve the electrical properties of Group 6 TMDs. Herein, the authors aspire to investigate the effects of doping varying amounts of vanadium on molybdenum dichalcogenides on their electrocatalytic activities toward hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction. Despite previous studies bespeaking promising effects, the results here demonstrate both improvements and worsening of electrocatalytic performances from varying the stoichiometry of vanadium dopants in molybdenum dichalcogenides, depending on the type of materials and intended electrochemical applications.  相似文献   

10.
Lithium‐rich layered oxides (LLOs) exhibit great potential as high‐capacity cathode materials for lithium‐ion batteries, but usually suffer from capacity/voltage fade during electrochemical cycling. Herein, a gradient polyanion‐doping strategy is developed to initiate surface structural transition to form a spinel‐like surface nanolayer and a polyanion‐doped layered core material in LLOs simultaneously. This strategy integrates the advantages of both bulk doping and surface modification as the oxygen close‐packed structure of LLOs is stabilized by polyanion doping, and the LLO cathodes are protected from steady corrosion induced by electrolytes. A LLO material modified with 5 at% phosphate (5%P@LLO) shows a high reversible discharge capacity of ≈300 mAh g?1 at 0.1 C, excellent cycling stability with a capacity retention of 95% after 100 cycles, and enhanced electrode kinetics. This gradient doping strategy can be further extended to other polyanion‐doped LLO materials, such as borate and silicate polyanions.  相似文献   

11.
Recently, lithium‐ion batteries have been attracting more interest for use in automotive applications. Lithium resources are confirmed to be unevenly distributed in South America, and the cost of the lithium raw materials has roughly doubled from the first practical application in 1991 to the present and is increasing due to global demand for lithium‐ion accumulators. Since the electrochemical equivalent and standard potential of sodium are the most advantageous after lithium, sodium based energy storage is of great interest to realize lithium‐free high energy and high voltage batteries. However, to the best of our knowledge, there have been no successful reports on electrochemical sodium insertion materials for battery applications; the major challenge is the negative electrode and its passivation. In this study, we achieve high capacity and excellent reversibility sodium‐insertion performance of hard‐carbon and layered NaNi0.5Mn0.5O2 electrodes in propylene carbonate electrolyte solutions. The structural change and passivation for hard‐carbon are investigated to study the reversible sodium insertion. The 3‐volt secondary Na‐ion battery possessing environmental and cost friendliness, Na+‐shuttlecock hard‐carbon/NaNi0.5Mn0.5O2 cell, demonstrates steady cycling performance as next generation secondary batteries and an alternative to Li‐ion batteries.  相似文献   

12.
Despite the unparalleled theoretical gravimetric energy, Li‐O2 batteries are still under a research stage because of their insufficient cycle lives. While the reversibility in air‐cathodes has been lately improved significantly by the deepened understanding on the electrode–electrolyte reaction and the integration of diverse catalysts, the stability of the Li metal interface has received relatively much less attention. The destabilization of the Li metal interface by crossover of water and oxygen from the air‐cathode side can indeed cause as fatal degradation for the cycle life as the irreversibility of the air‐cathodes. Here, it is reported that cheap poreless polyurethane separator can effectively suppress this crossover while allowing Li ions to diffuse through selectively. The polyurethane separator also protects Li metal anodes from redox mediators used for enhancing the reversibility of the air‐cathode reaction. Based on the Li metal protection, a persistent capacity of 600 mAh g?1 is preserved for more than 200 cycles. The current approach can be readily applicable to many other rechargeable batteries that suffer from similar interfacial degradation by side products from the other electrode.  相似文献   

13.
Transition metal oxides, possessing high theoretical specific capacities, are promising anode materials for sodium‐ion batteries. However, the sluggish sodiation/desodiation kinetics and poor structural stability restrict their electrochemical performance. To achieve high and fast Na storage capability, in this work, rambutan‐like hybrid hollow spheres of carbon confined Co3O4 nanoparticles are synthesized by a facile one‐pot hydrothermal treatment with postannealing. The hierarchy hollow structure with ultrafine Co3O4 nanoparticles embedded in the continuous carbon matrix enables greatly enhanced structural stability and fast electrode kinetics. When tested in sodium‐ion batteries, the hollow structured composite electrode exhibits an outstandingly high reversible specific capacity of 712 mAh g?1 at a current density of 0.1 A g?1, and retains a capacity of 223 mAh g?1 even at a large current density of 5 A g?1. Besides the superior Na storage capability, good cycle performance is demonstrated for the composite electrode with 74.5% capacity retention after 500 cycles, suggesting promising application in advanced sodium‐ion batteries.  相似文献   

14.
Layered transition metal oxides (TMOs) are appealing cathode candidates for sodium‐ion batteries (SIBs) by virtue of their facile 2D Na+ diffusion paths and high theoretical capacities but suffer from poor cycling stability. Herein, taking P2‐type Na2/3Ni1/3Mn2/3O2 as an example, it is demonstrated that the hierarchical engineering of porous nanofibers assembled by nanoparticles can effectively boost the reaction kinetics and stabilize the structure. The P2‐Na2/3Ni1/3Mn2/3O2 nanofibers exhibit exceptional rate capability (166.7 mA h g?1 at 0.1 C with 73.4 mA h g?1 at 20 C) and significantly improved cycle life (≈81% capacity retention after 500 cycles) as cathode materials for SIBs. The highly reversible structure evolution and Ni/Mn valence change during sodium insertion/extraction are verified by in operando X‐ray diffraction and ex situ X‐ray photoelectron spectroscopy, respectively. The facilitated electrode process kinetics are demonstrated by an additional study using the electrochemical measurements and density functional theory computations. More impressively, the prototype Na‐ion full battery built with a Na2/3Ni1/3Mn2/3O2 nanofibers cathode and hard carbon anode delivers a promising energy density of 212.5 Wh kg?1. The concept of designing a fibrous framework composed of small nanograins offers a new and generally applicable strategy for enhancing the Na‐storage performance of layered TMO cathode materials.  相似文献   

15.
Reversible nanostructured electrode materials are at the center of research relating to rechargeable lithium batteries, which require high power, high capacity, and high safety. The higher capacities and higher rate capabilities for the nanostructured electrode materials than for the bulk counterparts can be attributed to the higher surface area, which reduces the overpotential and allows faster reaction kinetics at the electrode surface. These electrochemical enhancements can lead to versatile potential applications of the batteries and can provide breakthroughs for the currently limited power suppliers of mobile electronics. This Feature Article describes recent research advances on nanostructured cathode and anode materials, such as metals, metal oxides, metal phosphides and LiCoO2, LiNi1–xMxO2 with zero‐, one‐, two‐, and three‐dimensional morphologies.  相似文献   

16.
Anode materials that operate via the alloying–dealloying reaction mechanism are well known in established and maturing battery systems such as lithium‐ion and sodium‐ion batteries. Recently, a new type of metal‐ion battery that utilizes K+ ions in its operating principle has attracted significant attention due to a possibility of building high voltage cells using an abundant potassium ionic shuttle. Establishing promising electrode materials is of paramount importance for this new type of battery. This feature article summarizes available early results on the alloying–dealloying anode materials in potassium electrochemical cells. Based on original research (some data are presented for the first time) and independently published literature, experimental results on silicon, tin, phosphorus, antimony, and lead‐containing anodes are critically discussed. The electrochemical properties, charge storage mechanisms, and achievable capacities are considered. The results are compared with the behaviors of the same materials in lithium and sodium cells, and the importance of the volumetric parameters of electrodes is emphasized. Finally, a number of further research directions in these interesting anode materials are suggested. The feature article provides a useful reference for the growing number of researchers and specialists working in the field of emerging metal‐ion batteries with non‐lithium chemistries.  相似文献   

17.
Li–air batteries, characteristic of superhigh theoretical specific energy density, cost‐efficiency, and environment‐friendly merits, have aroused ever‐increasing attention. Nevertheless, relatively low Coulomb efficiency, severe potential hysteresis, and poor rate capability, which mainly result from sluggish oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) kinetics, as well as pitiful cycle stability caused by parasitic reactions, extremely limit their practical applications. Manganese (Mn)‐based oxides and their composites can exhibit high ORR and OER activities, reduce charge/discharge overpotential, and improve the cycling stability when used as cathodic catalyst materials. Herein, energy storage mechanisms for Li–air batteries are summarized, followed by a systematic overview of the progress of manganese‐based oxides (MnO2 with different crystal structures, MnO, MnOOH, Mn2O3, Mn3O4, MnOx, perovskite‐type and spinel‐type manganese oxides, etc.) cathodic materials for Li–air batteries in the recent years. The focus lies on the effects of crystal structure, design strategy, chemical composition, and microscopic physical parameters on ORR and OER activities of various Mn‐based oxides, and even the overall performance of Li–air batteries. Finally, a prospect of the research for Mn‐based oxides cathodic catalysts in the future is made, and some new insights for more reasonable design of Mn‐based oxides electrocatalysts with higher catalytic efficiency are provided.  相似文献   

18.
Lithium (Li) metal has been considered as an important substitute for the graphite anode to further boost the energy density of Li‐ion batteries. However, Li dendrite growth during Li plating/stripping causes safety concern and poor lifespan of Li metal batteries (LMB). Herein, fluoroethylene carbonate (FEC) additives are used to form a LiF‐rich solid electrolyte interphase (SEI). The FEC‐induced SEI layer is compact and stable, and thus beneficial to obtain a uniform morphology of Li deposits. This uniform and dendrite‐free morphology renders a significantly improved Coulombic efficiency of 98% within 100 cycles in a Li | Cu half‐cell. When the FEC‐protected Li metal anode matches a high‐loading LiNi0.5Co0.2Mn0.3O2 (NMC) cathode (12 mg cm?2), a high initial capacity of 154 mAh g?1 (1.9 mAh cm?2) at 180.0 mA g?1 is obtained. This LMB with conversion‐type Li metal anode and intercalation‐type NMC cathode affords an emerging energy storage system to probe the energy chemistry of Li metal protection and demonstrates the material engineering of batteries with very high energy density.  相似文献   

19.
Metallic sodium (Na) is one of the most promising anode candidates for next‐generation secondary batteries. The development of Na metal batteries with a high energy density and low cost is desirable to meet the requirements of both portable and stationary electrical energy storage. Unfortunately, several problems caused by the unstable Na metal anode severely hinder the practical applications of these batteries. Here reported is a facile but effective methodology to form a multistructural interphase layer containing a sodium fluoride‐rich solid electrolyte interphase (SEI) and crisscrossed Na3Sb bars on the Na electrode surface. The reinforced Na‐alloy network and chemically/electrochemically complementary SEI formation greatly improve the interphase strength and Na+ conductivity. The well‐protected Na metal electrode in symmetric Na|Na cells is stable and dendrite‐free in the plating and stripping cycling processes with a negligible voltage divergence, even at a large current density of 5 mA cm?2 or with a high deposition capacity of 10 mAh cm?2. Moreover, this anode is especially compatible with different cathodes and demonstrates outstanding cycle performance in the full cells. It is believed that this approach provides a practical solution toward stable Na metal anodes and related battery systems.  相似文献   

20.
A scalable and efficient process to modify electrodes with enhanced mass transfer and reaction kinetics is critical for redox flow batteries (RFBs). For the first time, this work introduces electrochemical exfoliation as a surface modification method of graphite felt (GF) to enhance the mass transfer and reaction kinetics in RFBs. Anion intercalation and subsequent gas evolutions at room temperature for one minute expand the graphite layers that increase the electrode surface area. Meanwhile, sufficient oxygen functional groups are introduced to the electrode, resulting in enhanced reaction kinetics and improved hydrophilicity. Further, spin‐polarized density functional theory is employed to reveal the role of oxygen functional groups in accelerating the vanadium redox reaction. Benefitting from sufficient oxygen groups, larger surface area, and superior wettability, the as‐prepared exfoliated GF (E‐GF) shows exceptional electrocatalytic activity with minimized overpotential, higher volumetric capacity, and improved energy efficiency. The redox flow battery assembled with the E‐GF electrode delivers voltage and energy efficiencies of 89.72% and 86.41% at the current density of 100 mA cm?2, respectively. Remarkably, compared to the traditional GF treatment method, the elimination of the high temperature and long‐time treatment processes make this approach much more energy and time efficient, scalable, and affordable for large‐scale manufacturing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号