首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Metal halide perovskites are rising as a competitive material for next‐generation light‐emitting diodes (LEDs). However, the development of perovskite LEDs is impeded by their fast carriers diffusion and poor stability in bias condition. Herein, quasi‐2D CsPbBr3 quantum wells homogeneously surrounded by inorganic crystalline Cs4PbBr6 of large bandgap are grown. The centralization of carriers in nanoregion facilitates radiative recombination and brings much enhanced luminescence quantum yield. The external quantum efficiency and luminescence intensity of the LEDs based on this nanocomposite are one order of magnitude higher than the conventional low‐dimensional perovskite. Meanwhile, the use of inorganic nanocomposite materials brings much improved device operation lifetime under constant electrical field.  相似文献   

2.
Inherent poor stability of perovskite nanocrystals (NCs) is the main impediment preventing broad applications of the materials. Here, TiO2 shell coated CsPbBr3 core/shell NCs are synthesized through the encapsulation of colloidal CsPbBr3 NCs with titanium precursor, followed by calcination at 300 °C. The nearly monodispersed CsPbBr3/TiO2 core/shell NCs show excellent water stability for at least three months with the size, structure, morphology, and optical properties remaining identical, which represent the most water‐stable inorganic shell passivated perovskite NCs reported to date. In addition, TiO2 shell coating can effectively suppress anion exchange and photodegradation, therefore dramatically improving the chemical stability and photostability of the core CsPbBr3 NCs. More importantly, photoluminescence and (photo)electrochemical characterizations exhibit increased charge separation efficiency due to the electrical conductivity of the TiO2 shell, hence leading to an improved photoelectric activity in water. This study opens new possibilities for optoelectronic and photocatalytic applications of perovskites‐based NCs in aqueous phase.  相似文献   

3.
Hybrid organic‐inorganic halide perovskites are actively pursued for optoelectronic technologies, but the poor stability is the Achilles’ heel of these materials that hinders their applications. Very recently, it has been shown that lead sulfide (PbS) quantum dots (QDs) can form epitaxial interfaces with the perovskite matrix and enhance the overall stability. In this work, it is demonstrated that embedding QDs can significantly modify the transport property of pristine perovskite single crystals, endowing them with new functionalities besides being structurally robust and free from grain boundaries. Resistive switching memory devices are constructed using solution‐processed CH3NH3PbBr3 (MAPbBr3) perovskite single crystals and the QD‐embedded counterparts. It is found that QDs could significantly enhance the charge transport and reduce the current–voltage hysteresis. The pristine singe crystal device exhibits negative differential resistance, while the QD‐embedded crystals are featured with filament‐type switching behavior and much improved device stability. This study underscores the potential of QD‐embedded hybrid perovskites as a new media for advanced electronic devices.  相似文献   

4.
High-quality backlit display puts forward urgent demand for color-converting materials. Recently, metal halide perovskites (MHPs) with full spectral tunability, high photoluminescence quantum yields (PLQYs), and high color purity have found potential application in wide-color-gamut display. Regrettably, naked MHPs suffer from long-term instable issue and cannot pass harsh stability tests. Herein, amorphous-glass-protected green/red CsPbX3 quantum dots (QDs) are prepared by elaborately optimizing glass structure, perovskite concentration, and in situ crystallization. PLQYs of green CsPbBr3@glass and red CsPbBr1.5I1.5@glass reach 94% and 78%, respectively, which are the highest ones of CsPbX3@glass composites reported so far and comparable to colloidal counterparts. Benefited from complete isolation of QDs from external environment by glass network, CsPbX3@glass can endure harsh commercial standard aging tests of 85 °C/85%RH and blue-light-irradiation, which are applied to construct white light-emitting diodes (wLEDs) with high external quantum efficiency of 13.8% and ultra-high luminance of 500 000 cd m−2. Accordingly, the perovskite wLED arrays-based backlit unit and a prototype display device are designed for the first time, showing more vivid and wide-color-gamut feature benefited from narrowband emissions of CsPbX3 QDs. This work highlights practical application of CsPbX3@glass composite as an efficient and stable light color converter in backlit display.  相似文献   

5.
Cubic phase CsPbI3 (α‐CsPbI3) perovskite quantum dots (QDs) have received extensive attention due to their all‐inorganic composition and suitable band gap (1.73 eV). However, α‐CsPbI3 QDs might convert to δ‐CsPbI3 (orthorhombic phase with indirect band gap of 2.82 eV) due to easy loss of surface ligands. In addition, commonly used long‐chain ligands (oleic acid, OA, and oleylamine, OLA) hinder efficient charge transport in optoelectronic devices. In order to relieve these drawbacks, OA, OLA, octanoic acid, and octylamine are used as capping ligands for synthesizing high‐quality α‐CsPbI3 QDs. The results indicate that these QDs exhibit excellent optical properties and long‐term stability compared to QDs capped only with OA and OLA. Moreover, QDs with shorter ligands exhibit an enhanced charge transport rate, which improves the power conversion efficiency of photovoltaic devices from 7.76% to 11.87%.  相似文献   

6.
Lead halide perovskite nanocrystals (PeNCs) are promising materials for applications in optoelectronics. However, their environmental instability remains to be addressed to enable their advancement into industry. Here the development of a novel synthesis method is reported for monodispersed PeNCs coated with all inorganic shell of cesium lead bromide (CsPbBr3) grown epitaxially on the surface of formamidinium lead bromide (FAPbBr3) NCs. The formed FAPbBr3/CsPbBr3 NCs have photoluminescence in the visible range 460–560 nm with narrow emission linewidth (20 nm) and high optical quantum yield, photoluminescence quantum yield (PLQY) up to 93%. The core/shell perovskites have enhanced optical stability under ambient conditions (70 d) and under ultraviolet radiation (50 h). The enhanced properties are attributed to overgrowth of FAPbBr3 with all‐inorganic CsPbBr3 shell, which acts as a protective layer and enables effective passivation of the surface defects. The use of these green‐emitting core/shell FAPbBr3/CsPbBr3 NCs is demonstrated in light‐emitting diodes (LEDs) and significant enhancement of their performance is achieved compared to core only FAPbBr3‐LEDs. The maximum current efficiency observed in core/shell NC LED is 19.75 cd A‐1 and the external quantum efficiency of 8.1%, which are approximately four times and approximately eight times higher, respectively, compared to core‐only devices.  相似文献   

7.
Lead halide perovskite quantum dots (QDs) are promising electrochemiluminescence (ECL) nanoemitters due to their fascinating photophysical properties. However, due to their poor structural stability against the external environment, the trade‐off between their colloidal stability and carrier injection/transport efficiency is a major challenge in the advancement of perovskite‐based ECL technology. In this work, intense and stable ECL from CsPbBr3 (CPB) QDs is achieved by simultaneously encapsulating CPB QDs and coreactant (CoR) into in situ generated SiO2 matrix via hydrolysis of tetramethyl orthosilicate. The well‐designed architecture of the as‐obtained CPB‐CoR@SiO2 nanocomposites (NCs) guarantees not only greatly improved stability thanks to the peripheral SiO2 protecting matrix, but also efficient self‐enhanced ECL between CPB and the intra‐coreactants. Consequently, by elaborately selecting the CoR molecules with different tertiary/secondary amines and functional groups, multifold higher (up to 10.2 times) ECL efficiencies are obtained for the CPB‐CoR@SiO2 NCs alone in reference to the standard Ru(bpy)32+/tri‐n‐propylamine system. This work provides an efficient design strategy for obtaining stable and highly efficient ECL from perovskite QDs, and offers a new perspective for the development and application of perovskite‐based ECL system.  相似文献   

8.
Perovskite quantum dots (PQDs) have attracted much attention in the field of photoelectrochemical (PEC) sensors owing to their superb optical properties and efficient charge transport, but the inherent poor stability severely hinders their PEC applications. Herein, hydrolysis-resistant CsPbBr3/reduced graphene oxide nanoscrolls (CsPbBr3/rGO NSs) are obtained by solvent-assisted self-rolling process toward water-stable PEC sensors. CsPbBr3 QDs embedded in rGO nanosheets can be prevented from water since the multilayer rGO shell layers, which maintains excellent optical properties. On account of strong interfacial interactions, rGO nanosheets are crimped spontaneously with CsPbBr3 QDs, which offer access to superb structural and long-term storage stability. Moreover, appropriate band alignment and ultrafast interfacial carrier transfer enable CsPbBr3/rGO NSs to exhibit greatly enhanced anode photocurrent response for subsequent PEC sensing. As a demonstration, the molecular imprinted PEC sensors for two kinds of mycotoxins (aflatoxin B1 or ochratoxin A) presents an ultra-high sensitivity and good anti-interference ability. Significantly, this work provides an inspirable and convenient route for hydrolysis-resistant PQDs-based optoelectronic and photoelectrocatalytic applications in aqueous ambience.  相似文献   

9.
CsPbBr3 is a promising type of light‐emitting halide perovskite with inorganic composition and desirable thermal stability. The luminescence efficiency of pristine CsPbBr3 thin films, however, appears to be limited. In this work, light emitting diodes based on CsPbBr3|Cs4PbBr6 composites are demonstrated. Both quantum efficiency and emission brightness are improved significantly compared with similar devices constructed using pure CsPbBr3. The high brightness can be attributed to the enhanced radiative recombination from CsPbBr3 crystallites confined in the Cs4PbBr6 host matrix. The unfavorable charge transport property of Cs4PbBr6 can be circumvented by optimizing the ratio between the host and the guest components and the total thickness of the composite thin films. The inorganic composition of the emitting layer also leads to improved device stability under the condition of continuous operation.  相似文献   

10.
Although significant progress has been made in improving the external quantum efficiencies (EQEs) of perovskite quantum dot (QD) light-emitting diodes (QLEDs), understanding the degradation mechanism and enhancing stability remain a challenge. Herein,  increasing the content of Br-based passivation ligands is shown to enhance the EQE up to 16.1% by reducing the defects of CsPbBr3 QDs in a Br-rich environment. However, the operational lifetimes of perovskite QLEDs gradually decrease with the increase of halide content, owing to the intensified ion migration under continuous electric field confirmed by the current behavior of QLEDs and time-of-flight secondary-ion mass spectrometry. Furthermore, a thorough analysis of the relationship between electricity and luminance of QLEDs suggests that a small amount of residue oleic acid ligands could weaken ion migration. Accordingly, a halide- and acid-hybrid (HAH) co-passivation strategy is proposed to optimize the content of Br- and acid-based ligands, and achieve a maximum EQE of 18.6% and an operational lifetime (T50, extrapolated) of 213 h for CsPbBr3 QLEDs. This approach for passivating QDs combines the high efficiency of Br-based ligands with the improved stability of acid-based ligands. The study elucidates the correlation between ligands and device performance, highlighting the significance of two or even multiple ligands for efficient and stable perovskite QLEDs.  相似文献   

11.
Recent years have witnessed a rapid development of all‐inorganic halide perovskite in optoelectronic devices. Ultrathin 2D CsPbBr3 nanosheets (NSs) with large lateral dimensions have demonstrated exceptional photophysical properties because of their analogous exciton electronic structure to quantum wells. Despite the incredible progress on device performance, the photophysics and carrier transportation parameters of quantum‐confined CsPbBr3 NSs are lacking, and the fundamental understanding of the exciton dissociation mechanism is far less developed. Here, a ligands rearrangement mechanism is proposed to explain why annealed NS films have an increased charge transfer rate and a decreased exciton binding energy and lifetime, prompting tunneling as a dominant way of exciton dissociation to separate photogenerated excitons between neighboring NSs. This facile but efficient method provides a new insight to manipulate perovskite nanocrystals coupling. Moreover, ultrathin 2D CsPbBr3 NS film is demonstrated to have a enhanced absorption cross section and high carrier mobility of 77.9 cm2 V?1 s?1, contributing to its high responsivity of 0.53 A W?1. The photodetector has a long‐term stability up to three months, which are responsible for reliable perovskite‐based device performance.  相似文献   

12.
Metal‐halide perovskites (MHP) are highly promising semiconductors for light‐emitting and photovoltaic applications. The colloidal synthesis of nanocrystals (NCs) is an effective approach for obtaining nearly defect‐free MHP that can be processed into inks for low‐cost, high‐performance device fabrication. However, disentangling the effects of surface ligands, morphology, and boundaries on charge‐carrier transport in thin films fabricated with these high‐quality NCs is inherently difficult. To overcome this fundamental challenge, terahertz (THz) spectroscopy is employed to optically probe the photoconductivity of CsPbBr3 NC films. The vibrational and optoelectronic properties of the NCs are compared with those of the corresponding bulk polycrystalline perovskite and significant deviations are found. Charge‐carrier mobilities and recombination rates are demonstrated to vary significantly with the NC size. Such dependences derive from the localized nature of charge carriers within NCs, with local mobilities dominating over interparticle transport. It is further shown that the colloidally synthesized NCs have distinct vibrational properties with respect to the bulk perovskite, exhibiting blue‐shifted optical phonon modes with enhanced THz absorption strength that also manifest as strong modulations in the THz photoconductivity spectra. Such fundamental insights into NC versus bulk properties will guide the optimization of nanocrystalline perovskite thin films for optoelectronic applications.  相似文献   

13.
Photo(electro)catalysis has triggered ripples of excitement in environmental protection and energy conversion due to its potential applications in the degradation of organic pollutants, evolution of H2 and O2 from H2O splitting, and reduction of CO2 by utilizing solar energy. Over the past three years, halide perovskites, which render extraordinary charge transport capability in solar cells, have witnessed a burgeoning development in photocatalysis over the conventional oxide perovskites. This type of perovskite demonstrates a small surface area, limited light utilization, and high carrier recombination, resulting in inadequate reactant contact on catalyst surfaces and decreased catalytic activity. In this review, the progress of halide perovskites is presented starting from fundamental properties (i.e., synthesis and structure) to applications in light‐driven reactions with the focus on crystal dimensions, toxicity, and stability. In addition, computational studies on halide perovskites from electronic properties to catalytic mechanisms are presented to lay a foundation for future research and advancement in this field. Last, critical insights are provided into the existing limitations and favorable prospects for halide perovskites.  相似文献   

14.
Excitonic 0D and 2D lead‐halide perovskites have been recently developed and investigated as new materials for light generation. Here broadband (>1 eV) emission from newly synthesized 0D lead‐free colloidal Cs3Bi2I9 nanocrystals (NCs) is reported. The nature of their emissive states as well as the relative dynamics which are currently hotly debated are investigated. In particular, it is found that the broadband emission is made by the coexistence of emissive excitons and sub‐bandgap emissive trap‐states. Remarkably, evidence of enhanced Raman scattering from the ligands is observed when attached to the NCs surface, an effect that is preliminarily attributed to strong exciton‐ligands electronic coupling in these systems.  相似文献   

15.
Cesium lead halide quantum dots (QDs) have tunable photoluminescence that is capable of covering the entire visible spectrum and have high quantum yields, which make them a new fluorescent materials for various applications. Here, the synthesis of CsPbX3 (X = Cl, Br, I, or mixed Cl/Br and Br/I) QDs by direct ion reactions in ether solvents is reported, and for the first time the synergetic effects of solvent polarity and reaction temperature on the nucleation and growth of QDs are demonstrated. The use of solvent with a low polarity enables controlled growth of QDs, which facilitates the synthesis of high‐quality CsPbX3 QDs with broadly tunable luminescence, narrow emission width, and high quantum yield. A QD white LED (WLED) is demonstrated by coating the highly fluorescent green‐emissive CsPbBr3 QDs together with red phosphors on a blue InGaN chip, which presents excellent warm white light emission with a high rendering index of 93.2 and color temperature of 5447 K, suggesting the potential applications of highly fluorescent cesium lead halide perovskite QDs as an alternative color converter in the fabrication of WLEDs.  相似文献   

16.
A new capacitive‐type humidity sensor is proposed using novel materials and fabrication process for practical applications in sensitive environments and cost‐effective functional devices that require ultrasensing performances. Metal halide perovskites (CsPbBr3 and CsPb2Br5) combined with diverse ceramics (Al2O3, TiO2, and BaTiO3) are selected as sensing materials for the first time, and nanocomposite powders are deposited by aerosol deposition (AD) process. A state‐of‐the‐art CsPb2Br5/BaTiO3 nanocomposite humidity sensor prepared by AD process exhibits a significant increase in humidity sensing compared with CsPbBr3/Al2O3 and CsPbBr3/TiO2 sensors. An outstanding humidity sensitivity (21426 pF RH%?1) with superior linearity (0.991), fast response/recovery time (5 s), low hysteresis of 1.7%, and excellent stability in a wide range of relative humidity is obtained owing to a highly porous structure, effective charge separation, and water‐resistant characteristics of CsPb2Br5. Notably, this unprecedented result is obtained via a simple one‐step AD process within a few minutes at room temperature without any auxiliary treatment. The synergetic combination of AD technique and perovskite‐based nanocomposite can be potentially applied toward the development of multifunctional sensing devices.  相似文献   

17.
Highly efficient, visible‐light‐induced H2 generation can be achieved without the help of a Pt cocatalyst by new hybrid photocatalysts, in which CdS quantum dots (QDs) (particle size ≈2.5 nm) are incorporated in the porous assembly of sub‐nanometer‐thick layered titanate nanosheets. Due to the very‐limited crystal dimension of component semiconductors, the electronic structure of CdS QDs is strongly coupled with that of the layered titanate nanosheets, leading to an efficient electron transfer between them and the enhancement of the CdS photostability. As a consequence of the promoted electron transfer, the photoluminescence of CdS QDs is nearly quenched after hybridization, indicating the almost‐suppression of electron‐hole recombination. These Pt‐cocatalyst‐free, CdS‐layered titanate nanohybrids show much‐higher photocatalytic activity for H2 production than the precursor CdS QDs and layered titanate, which is due to the increased lifetime of the electrons and holes, the decrease of the bandgap energy, and the expansion of the surface area upon hybridization. The observed photocatalytic efficiency of these Pt‐free hybrids (≈1.0 mmol g?1 h?1) is much greater than reported values of other Pt‐free CdS‐TiO2 systems. This finding highlights the validity of 2D semiconductor nanosheets as effective building blocks for exploring efficient visible‐light‐active photocatalysts for H2 production.  相似文献   

18.
Perovskites have attracted intensive attention as promising materials for the application in various optoelectronic devices due to their large light absorption coefficient, high carrier mobility, and long charge carrier diffusion length. However, the performance of the pure perovskite nanocrystals-based device is extremely restricted by the limited charge transport capability due to the existence of a large number of the grain boundary between perovskite nanocrystals. To address these issues, a high-performance photodetector based on all-inorganic CsPbBr3 perovskite nanocrystals/2D non-layered cadmium sulfide selenide heterostructure has been demonstrated through energy band engineering with designed typed-II heterostructure. The photodetector exhibits an ultra-high light-to-dark current ratio of 1.36 × 105, a high responsivity of 2.89 × 102 A W−1, a large detectivity of 1.28 × 1014 Jones, and the response/recovery time of 0.53s/0.62 s. The enhancement of the optoelectronic performance of the heterostructure photodetector is mainly attributed to the efficient charge carrier transfer ability between the all-inorganic CsPbBr3 perovskites and 2D cadmium sulfide selenide resulting from energy band alignment engineering. The charge carriers’ transfer dynamics and the mechanism of the CsPbBr3 perovskites/2D non-layered nanosheets interfaces have also been studied by state-state PL spectra, fluorescence lifetime imaging microscopy, time-resolved photoluminescence spectroscopy, and Kelvin probe force microscopy measurements.  相似文献   

19.
All‐inorganic perovskite light‐emitting diodes (LEDs) reveal efficient luminescence with high color purity, but their modest brightness and poor stability are still critical drawbacks. Here, the luminescent efficiency and the stability of perovskite LEDs (PeLEDs) are boosted by antisolvent vapor treatment of CsPbBr3 embedded in a dielectric polymer matrix of polyethylene oxide (PEO). A unique method is developed to obtain high quality CsPbBr3 emitting layers with low defects by controlling their grain sizes. CsPbBr3 in PEO matrix is post‐treated with antisolvent of chloroform (CF), leading to microcrystals with a size of ≈5 µm along the in‐plane direction with active emitting composite of 90%. A device based on CF post‐treatment (CsPbBr3‐PEO‐CF) film displays a brightness of up to 51890 cd m?2 with an external quantum efficiency of 4.76%. CsPbBr3‐PEO‐CF PeLED still maintains 82% of its initial efficiency after 80 h continuous operation in ambient air, which indicates relatively good device stability. This work highlights that film quality is not only key to promoting fluorescence in CsPbBr3, but also to achieving higher performance PeLEDs.  相似文献   

20.
Metal halide perovskites have aroused tremendous interest in the past several years for their promising applications in display and lighting. However, the development of blue perovskite light‐emitting diodes (PeLEDs) still lags far behind that of their green and red cousins due to the difficulty in obtaining high‐quality blue perovskite emissive layers. In this study, a simple approach is conceived to improve the emission and electrical properties of blue perovskites. By introducing an alkali metal ion to occupy some sites of peripheral suspended organic ligands, the nonradiative recombination is suppressed, and, consequently, blue CsPb(Br/Cl)3 nanocrystals with a high photoluminescence quantum efficiency of 38.4% are obtained. The introduced K+ acts as a new type of metal ligand, which not only suppresses nonradiative pathways but also improves the charge carrier transport of the perovskite nanocrystals. With further engineering of the device structure to balance the charge injection rate, a spectrally stable and efficient blue PeLED with a maximum external quantum efficiency of 1.96% at the emission peak of 477 nm is fabricated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号