首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shape‐morphing hydrogels have emerging applications in biomedical devices, soft robotics, and so on. However, successful applications require a combination of excellent mechanical properties and fast responding speed, which are usually a trade‐off in hydrogel‐based devices. Here, a facile approach to fabricate 3D gel constructs by extrusion‐based printing of tough physical hydrogels, which show programmable deformations with high response speed and large output force, is described. Highly viscoelastic poly(acrylic acid‐co‐acrylamide) (P(AAc‐co‐AAm)) and poly(acrylic acid‐coN‐isopropyl acrylamide) (P(AAc‐co‐NIPAm)) solutions or their mixtures are printed into 3D constructs by using multiple nozzles, which are then transferred into FeCl3 solution to gel the structures by forming robust carboxyl–Fe3+ coordination complexes. The printed gel fibers containing poly(N‐isopropyl acrylamide) segment exhibit considerable volume contraction in concentrated saline solution, whereas the P(AAc‐co‐AAm) ones do not contract. The mismatch in responsiveness of the gel fibers affords the integrated 3D gel constructs the shape‐morphing ability. Because of the small diameter of gel fibers, the printed gel structures deform and recover with a fast speed. A four‐armed gripper is designed to clamp plastic balls with considerable holding force, as large as 115 times the weight of the gripper. This strategy should be applicable to other tough hydrogels and broaden their applications.  相似文献   

2.
3D‐printing is emerging as a technology to introduce microchannels into hydrogels, for the perfusion of engineered constructs. Although numerous techniques have been developed, new techniques are still needed to obtain the complex geometries of blood vessels and with materials that permit desired cellular responses. Here, a printing process where a shear‐thinning and self‐healing hydrogel “ink” is injected directly into a “support” hydrogel with similar properties is reported. The support hydrogel is further engineered to undergo stabilization through a thiol‐ene reaction, permitting (i) the washing of the ink to produce microchannels and (ii) tunable properties depending on the crosslinker design. When adhesive peptides are included in the support hydrogel, endothelial cells form confluent monolayers within the channels, across a range of printed configurations (e.g., straight, stenosis, spiral). When protease‐degradable crosslinkers are used for the support hydrogel and gradients of angiogenic factors are introduced, endothelial cells sprout into the support hydrogel in the direction of the gradient. This printing approach is used to investigate the influence of channel curvature on angiogenic sprouting and increased sprouting is observed at curved locations. Ultimately, this technique can be used for a range of biomedical applications, from engineering vascularized tissue constructs to modeling in vitro cultures.  相似文献   

3.
Helical fibers are versatile building blocks used by Nature to improve mechanical performance and to tune local behavior of load‐bearing materials. Helicoidal biocomposites are arranged in multiple layers with different fiber orientations. Such heterogeneity, not matched in synthetic materials, provides biological structures with superior properties. This is the case of the multilayer tube‐like structure of the wood cell wall, where each ply features a compliant matrix reinforced by stiff helicoidal microfibrils. Here, 3D polyjet printing and computer simulations are combined to investigate wood‐inspired helix‐reinforced cylinders. Composites with a main layer containing helicoidal fibers, bordered by inner and outer plies having thinner fibrils are considered. It is shown how the mechanical functionalities of the synthetic structures can be programmed by varying fibers/fibrils orientation and matrix compliance. It is demonstrated that failure resistance can be enhanced by enclosing the main helicoidal layer with a minimum amount of thin fibrils oriented perpendicular to the applied load, as observed in wood. Finite element simulations are used to highlight the critical role of the matrix in load‐transfer mechanisms among stiff elements. These structures have the potential to be assembled into larger systems, leading to graded composites with region‐specific properties optimized for multiple functionalities.  相似文献   

4.
Stem-cell-based therapeutic strategies are promising in the clinical treatment of intrauterine adhesions (IUAs), while endometrial regeneration still hardly restores the structure and function of the endometrium because of the inadequate microenvironment for the grafted stem cells and subsequent limited therapeutic efficiency. Herein, an injectable porous hydrogel scaffold (PH scaffold) with customizable shapes is presented by using a microfluidic-based 3D printing technique for adipose-derived stem cells (ADSCs) delivery to enhance endometrial regeneration. These scaffolds display a controllable interconnected porous structure, which not only facilitates the encapsulation of ADSCs within the scaffold but also supports the recovery to their original shapes after injection. Furthermore, the cell viability of the laden ADSCs is well-maintained post-injection, exhibiting promotive effects on cell migration, proliferation, and tube formation. Based on these features, an ADSCs-laden PH scaffold with a hollow endometrium-mimicking morphology is designed and in situ injected into the damaged endometrium in rats of IUAs. These results show that the ADSCs-laden PH scaffolds can enhance functional endometrial regeneration by suppressing the inflammatory response, promoting cell proliferation, and improving vascularization. Thus, it is believed that such unique 3D-printed porous scaffolds are promising candidates for cell delivery, which also provides a minimally-invasive and effective strategy for endometrial regeneration.  相似文献   

5.
The advancement in 3D‐printing technologies conveniently offers boundless opportunities for the customization of a practical substrate or electrode for diverse functionalities. ReS2 is an attractive transition metal dichalcogenide (TMD), showing strong photoelectrochemical activities. Two advanced systems are merged for the next step in electrochemistry—the limits of the prevailing synthesis techniques of TMDs operating at high temperature or low pressure, which are not compatible with 3D‐printed polymer electrodes that can withstand only comparatively low temperatures, are overcome. A unique NH4ReS4 precursor is separately prepared to conduct subsequent ReS2 electrodeposition at room temperature on 3D‐printed carbon and 2D‐printed carbon electrodes. The deposited ReS2 is investigated as a dual‐functional electro‐ and photocatalyst in hydrogen evolution reaction and photoelectrochemical oxidation of water. Moreover, the electrodeposition conditions can be adjusted to optimize the catalytic activities. These encouraging outcomes demonstrate the simplicity yet versatility of TMDs based on electrodeposition technique on a rationally designed conductive platform, which creates numerous possibilities for other TMDs and on other low‐temperature substrates for electrochemical energy devices.  相似文献   

6.
Despite extensive progress to engineer hydrogels for a broad range of technologies, practical applications have remained elusive due to their (until recently) poor mechanical properties and lack of fabrication approaches, which constrain active structures to simple geometries. This study demonstrates a family of ionic composite hydrogels with excellent mechanical properties that can be rapidly 3D‐printed at high resolution using commercial stereolithography technology. The new material design leverages the dynamic and reversible nature of ionic interactions present in the system with the reinforcement ability of nanoparticles. The composite hydrogels combine within a single platform tunable stiffness, toughness, extensibility, and resiliency behavior not reported previously in other engineered hydrogels. In addition to their excellent mechanical performance, the ionic composites exhibit fast gelling under near‐UV exposure, remarkable conductivity, and fast osmotically driven actuation. The design of such ionic composites, which combine a range of tunable properties and can be readily 3D‐printed into complex architectures, provides opportunities for a variety of practical applications such as artificial tissue, soft actuators, compliant conductors, and sensors for soft robotics.  相似文献   

7.
A new method for complex metallic architecture fabrication is presented, through synthesis and 3D‐printing of a new class of 3D‐inks into green‐body structures followed by thermochemical transformation into sintered metallic counterparts. Small and large volumes of metal‐oxide, metal, and metal compound 3D‐printable inks are synthesized through simple mixing of solvent, powder, and the biomedical elastomer, polylactic‐co‐glycolic acid (PLGA). These inks can be 3D‐printed under ambient conditions via simple extrusion at speeds upwards of 150 mm s–1 into millimeter‐ and centimeter‐scale thin, thick, high aspect ratio, hollow and enclosed, and multi‐material architectures. The resulting 3D‐printed green‐bodies can be handled immediately, are remarkably robust, and may be further manipulated prior to metallic transformation. Green‐bodies are transformed into metallic counterparts without warping or cracking through reduction and sintering in a H2 atmosphere at elevated temperatures. It is shown that primary metal and binary alloy structures can be created from inks comprised of single and mixed oxide powders, and the versatility of the process is illustrated through its extension to more than two dozen additional metal‐based materials. A potential application of this new system is briefly demonstrated through cyclic reduction and oxidation of 3D‐printed iron oxide constructs, which remain intact through numerous redox cycles.  相似文献   

8.
Fibre‐based materials have received tremendous attention due to their flexibility and wearability. Although great efforts have been devoted to achieve high‐performance fibres over the past several years, it is still challenging for multifunctional macroscopic fibres to satisfy versatile applications. 2D transition metal carbides/nitrides (MXenes) with intriguing physical/chemical properties have been explored in broad application, and may be able to reinforce synthetic fibres. Inspired by natural materials, for the first time, flexible smart fibres and textiles are fabricated using a 3D printing process with hybrid inks of TEMPO (2,2,6,6‐tetramethylpiperidine‐1‐oxylradi‐cal)‐mediated oxidized cellulose nanofibrils (TOCNFs) and Ti3C2 MXene. The hybrid inks display good rheological properties, which allow them to achieve accurate structures and be rapidly printed. TOCNFs/Ti3C2 in hybrid inks self‐assemble to fibres with an aligned structure in ethanol, mimicking the features of the natural structures of plant fibres. In contrast to conventional synthetic fibres with limited functions, smart TOCNFs/Ti3C2 fibres and textiles exhibit significant responsiveness to multiple external stimuli (electrical/photonic/mechanical). TOCNFs/Ti3C2 textiles with electromechanical performance can be processed into sensitive strain sensors. Such multifunctional smart fibres and textiles will be promising in diverse applications, including wearable heating textiles, human health monitoring, and human–machine interfaces.  相似文献   

9.
Soft magnetic structures having a non-uniform magnetization profile can achieve multimodal locomotion that is helpful to operate in confined spaces. However, incorporating such magnetic anisotropy into their body is not straightforward. Existing methods are either limited in the anisotropic profiles they can achieve or too cumbersome and time-consuming to produce. Herein, a 3D printing method allowing to incorporate magnetic anisotropy directly into the printed soft structure is demonstrated. This offers at the same time a simple and time-efficient magnetic soft robot prototyping strategy. The proposed process involves orienting the magnetized particles in the magnetic ink used in the 3D printer by a custom electromagnetic coil system acting onto the particles while printing. The resulting structures are extensively characterized to confirm the validity of the process. The extent of orientation is determined to be between 92% and 99%. A few examples of remotely actuated small-scale soft robots that are printed through this method are also demonstrated. Just like 3D printing gives the freedom to print a large number of variations in shapes, the proposed method also gives the freedom to incorporate an extensive range of magnetic anisotropies.  相似文献   

10.
In the human body, microfibril structures can be found in several types of tissue, such as muscles, nerves, and even tendons. However, most micropatterned fabrication methods have focused on 2D surface patterned configurations, which imitate the alignment and fusion of cardiac and skeletal muscle cells. Despite the development of these 2D methods, it has continued to be a challenge to fabricate realistic 3D microfibril structures. The goal of this study is to develop a micropatterned polycaprolactone (PCL) microfiber strut. This process uses a microfibrillation/leaching process of poly(vinyl alcohol) (PVA) from a PVA/PCL mixture to imitate skeletal muscle cell alignment and fusion in vitro. To attain the optimal processing conditions, a variety of parameters—including a mixture ratio, processing temperature, and pneumatic pressure—are considered. To increase biocompatibility of a microfibrous PCL bundle, the fabricated structure is supplemented with type‐I collagen. The myoblasts (C2C12 cells) are used to determine the cellular responses of the fabricated structure. By analyzing cell proliferation and myogenic differentiation, it can be confirmed that the hybrid microfibrillated structure can be an important potential platform to obtain efficient regeneration of muscle cells.  相似文献   

11.
3D‐printing represents an emerging technology that can revolutionize the way object and functional devices are fabricated. Here the use of metal 3D printing is demonstrated to fabricate bespoke electrochemical stainless steel electrodes that can be used as platform for different electrochemical applications ranging from electrochemical capacitors, oxygen evolution catalyst, and pH sensor by means of an effective and controlled deposition of IrO2 films. The electrodes have been characterized by scanning electrode microscopy and energy dispersive X‐ray spectroscopy before the electrochemical testing. Excellent pseudocapacitive as well as catalytic properties have been achieved with these 3D printed steel‐IrO2 electrodes in alkaline solutions. These electrodes also demonstrate Nernstian behavior as pH sensor. This work represents a breakthrough in on‐site prototyping and fabrication of highly tailored electrochemical devices with complex 3D shapes which facilitate specific functions and properties.  相似文献   

12.
Peripheral nerve injuries are one of the most common types of traumatic damage to the nervous system. Treatment of peripheral nerve injuries aims to promote axon regrowth by imitating and improving the microenvironment for sciatic nerve regeneration. In this study, regeneration efficiency and behavior of peripheral nerves are compared under three treatment strategies: 1) transplantation of Schwann cell progenitors induced from purified neural crest stem cells; 2) implantation of a multiscale scaffold based on high-resolution 3D printing; and 3) implantation of this bionic scaffold loading Schwann cell progenitors. The results of structural, electrophysiological, and behavioral tests demonstrate that the three treatment strategies result in different degrees of regeneration. The purified neural crest stem cells differentiate into functional Schwann cells and promote axon regeneration. The multifunctional 3D printed scaffold promotes oriented growth and myelination, and the myelinated nerve regrows with increased density and without visible scaffolds after six months. For the regeneration, scaffold treatment produces better performance than cell graft alone. Finally, it is shown that implantation of multiscale scaffolds preloaded with neural crest stem cell derived Schwann cell progenitors is the best strategy to promote peripheral nerve regeneration with improved anatomy and function among the three different strategies.  相似文献   

13.
Chronic wounds are one of the most devastating complications of diabetes and are the leading cause of nontraumatic limb amputation. Despite the progress in identifying factors and promising in vitro results for the treatment of chronic wounds, their clinical translation is limited. Given the range of disruptive processes necessary for wound healing, different pharmacological agents are needed at different stages of tissue regeneration. This requires the development of wearable devices that can deliver agents to critical layers of the wound bed in a minimally invasive fashion. Here, for the first time, a programmable platform is engineered that is capable of actively delivering a variety of drugs with independent temporal profiles through miniaturized needles into deeper layers of the wound bed. The delivery of vascular endothelial growth factor (VEGF) through the miniaturized needle arrays demonstrates that, in addition to the selection of suitable therapeutics, the delivery method and their spatial distribution within the wound bed is equally important. Administration of VEGF to chronic dermal wounds of diabetic mice using the programmable platform shows a significant increase in wound closure, re‐epithelialization, angiogenesis, and hair growth when compared to standard topical delivery of therapeutics.  相似文献   

14.
Conventional bulky and rigid power systems are incapable of meeting flexibility and breathability requirements for wearable applications. Despite the tremendous efforts dedicated to developing various 1D energy storage devices with sufficient flexibility, challenges remain pertaining to fabrication scalability, cost, and efficiency. Here, a scalable, low‐cost, and high‐efficiency 3D printing technology is applied to fabricate a flexible all‐fiber lithium‐ion battery (LIB). Highly viscous polymer inks containing carbon nanotubes and either lithium iron phosphate (LFP) or lithium titanium oxide (LTO) are used to print LFP fiber cathodes and LTO fiber anodes, respectively. Both fiber electrodes demonstrate good flexibility and high electrochemical performance in half‐cell configurations. All‐fiber LIB can be successfully assembled by twisting the as‐printed LFP and LTO fibers together with gel polymer as the quasi‐solid electrolyte. The all‐fiber device exhibits a high specific capacity of ≈110 mAh g?1 at a current density of 50 mA g?1 and maintains a good flexibility of the fiber electrodes, which can be potentially integrated into textile fabrics for future wearable electronic applications.  相似文献   

15.
Naturally derived nanovesicles secreted from various cell types and found in body fluids can provide effective platforms for the delivery of various cargoes because of their intrinsic ability to be internalized for intercellular signal transmission and membrane recycling. In this study, the versatility of bioengineered extracellular membranous nanovesicles as potent carriers of small‐interfering RNAs (siRNAs) for stem cell engineering and in vivo delivery has been explored. Here, exosomes have been engineered, one of the cell‐derived vesicle types, to overexpress exosomal proteins fused with cell‐adhesion or cell‐penetrating peptides for enhanced intracellular gene transfer. To devise a more effective delivery system with potential for mass production, a new siRNA delivery system has also been developed by artificially inducing the outward budding of plasma membrane nanovesicles. Those nanovesicles have been engineered by overexpressing E‐cadherin to facilitate siRNA delivery to human stem cells with resistance to intracellular gene transfer. Both types of engineered nanovesicles deliver siRNAs to human stem cells for lineage specification with negligible cytotoxicity. The nanovesicles are efficient in delivering siRNA in vivo, suggesting feasibility for gene therapy. Cell‐derived, bioengineered nanovesicles used for siRNA delivery can provide functional platforms enabling effective stem cell therapeutics and in vivo gene therapy.  相似文献   

16.
Self‐propelled micro‐/nanomotors are in the forefront of materials research, for applications ranging from environmental remediation to biomedicine. However, due to their limited sizes, they can only navigate within small distances, typically in the order of millimeters, which inevitably hinder their use for large‐volume real applications. Here it is shown that a 3D‐printed millimeter‐scale motor (3DP‐motor) can act as “aircraft carrier” of TiO2/Pt Janus micromotors and be used for enhanced large‐volume environmental remediation applications. The 3DP‐motor can move fast for tens of meters through the Marangoni effect by asymmetrically releasing ethanol. During its navigation, this 3DP‐motor can carry and slowly release in solution TiO2/Pt Janus micromotors which can be propelled by light illumination while acting as photodegradation agents. Highly efficient degradation of nitroaromatic explosives over a large solution area is achieved. A wall‐following motion of the 3DP‐motor without external guidance is also demonstrated which is generated by the chemiosmotic flow at the wall vicinity. This can be easily tuned by changing the wettability of the wall surface and also modifying the shape of 3DP‐motor, leading to different motion behaviors. This work introduces a new concept of micromotors carried by large millimeter sized motors to traverse long distances and it should find a broad range of applications.  相似文献   

17.
Neurodegenerative diseases generally result in irreversible neuronal damage and neuronal death. Cell therapy shows promise as a potential treatment for these diseases. However, the therapeutic targeted delivery of these cells and the in situ provision of a suitable microenvironment for their differentiation into functional neuronal networks remain challenging. A highly integrated multifunctional soft helical microswimmer featuring targeted neuronal cell delivery, on‐demand localized wireless neuronal electrostimulation, and post‐delivery enzymatic degradation is introduced. The helical soft body of the microswimmer is fabricated by two‐photon lithography of the photocurable gelatin–methacryloyl (GelMA)‐based hydrogel. The helical body is then impregnated with composite multiferroic nanoparticles displaying magnetoelectric features (MENPs). While the soft GelMA hydrogel chassis supports the cell growth, and is degraded by enzymes secreted by cells, the MENPs allow for the magnetic transportation of the bioactive chassis, and act as magnetically mediated electrostimulators of neuron‐like cells. The unique combination of the materials makes these microswimmers highly integrated devices that fulfill several requirements for their future translation to clinical applications, such as cargo delivery, cell stimulation, and biodegradability. The authors envision that these devices will inspire new avenues for targeted cell therapies for traumatic injuries and diseases in the central nervous system.  相似文献   

18.
3D printing is seen as a game‐changing manufacturing process in many domains, including general medicine and dentistry, but the integration of more complex functions into 3D‐printed materials remains lacking. Here, it is expanded on the repertoire of 3D‐printable materials to include antimicrobial polymer resins, which are essential for development of medical devices due to the high incidence of biomaterial‐associated infections. Monomers containing antimicrobial, positively charged quaternary ammonium groups with an appended alkyl chain are either directly copolymerized with conventional diurethanedimethacrylate/glycerol dimethacrylate (UDMA/GDMA) resin components by photocuring or prepolymerized as a linear chain for incorporation into a semi‐interpenetrating polymer network by light‐induced polymerization. For both strategies, dental 3D‐printed objects fabricated by a stereolithography process kill bacteria on contact when positively charged quaternary ammonium groups are incorporated into the photocurable UDMA/GDMA resins. Leaching of quaternary ammonium monomers copolymerized with UDMA/GDMA resins is limited and without biological consequences within 4–6 d, while biological consequences could be confined to 1 d when prepolymerized quaternary ammonium group containing chains are incorporated in a semi‐interpenetrating polymer network. Routine clinical handling and mechanical properties of the pristine polymer matrix are maintained upon incorporation of quaternary ammonium groups, qualifying the antimicrobially functionalized, 3D‐printable composite resins for clinical use.  相似文献   

19.
Thermal camouflage utilizes the manipulation of heat fluxes to conceal an arbitrary object in various environments from being detected via thermography. In the past decade, the field of thermal metamaterials and the technique of 3D printing have been rapidly developed, which makes nonintuitive heat flux manipulation feasible. However, when thermal metamaterials are applied to the thermal camouflaging, their conductivities are dependent on the properties of background, leading to the damage of background integrality. Moreover, previous thermal camouflaging schemes have mostly worked in the 2D regime, largely restricting their functional angles and application scenarios, especially in complex environments. Here, wide‐angle radiative thermal camouflaging is realized by using a 3D‐printed meta‐helmet of extremely anisotropic thermal conductivities. Based on 3D coordinate transformation, this meta‐helmet directly maps temperature distributions from the background to the metamaterial surface without damaging background integrity. The non‐invasive device is efficient in wide‐angle thermal camouflage by rendering the same emissivity to the background medium and can self‐adjust to various even unknown background thermal fields, which is demonstrated in numerical simulations and experiments. This work opens a door to the 3D transformation‐thermotics‐based devices for versatile practical applications in thermal infrared stealth of macro‐sized objects and others.  相似文献   

20.
This study develops multimodal magnetic nanoclusters (M‐MNCs) for gene transfer, directed migration, and tracking of human mesenchymal stem cells (hMSCs). The M‐MNCs are designed with 5 nm iron oxide nanoparticles and a fluorescent dye (i.e., Rhodamine B) in the matrix of the Food and Drug Administration approved polymer poly(lactide‐co‐glycolide) using a nanoemulsion method. The synthesized M‐MNCs have a hydrodynamic diameter of ≈150 nm, are internalized by stem cells via endocytosis, and deliver genes with high efficiency. The cellular internalization and gene expression efficiency of the clustered nanoparticles are significantly higher than that of single nanoparticles. The M‐MNC‐labeled hMSCs migrate upon application of a magnetic force and can be visualized by both optical and magnetic resonance (MR) imaging. In animal models, the M‐MNC‐labeled hMSCs are also successfully tracked using optical and MR imaging. Thus, the M‐MNCs not only allow the efficient delivery of genes to stem cells but also the tracking of cells in animal models. Taken together, the results show that this new type of nanocomposite can be of great help in future stem cell research and in the development of cell‐based therapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号