首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of temperature and applied magnetic fields on photoluminescence (PL) emission and electronic energy transfer (ET) of both isolated and aggregated CdSe nanocrystals was investigated. Following 400-nm excitation, temperature-dependent, intensity-integrated and energy-resolved PL measurements were used to quantify the emission wavelength and amplitude of isolated CdSe nanocrystals. The results indicated an approximately three-fold increase in PL intensity upon decreasing the temperature from 300 K to 6 K; this was attributed to a reduction of charge carrier access to nanocrystal surface trap states and suppression of thermal loss channels. Temperature-dependent PL measurements of aggregated CdSe nanocrystals, which included both energy-donating and -accepting particles, were analyzed using a modified version of F?rster theory. Temperature-dependent ET efficiency increased from 0.55 to 0.75 upon decreasing the sample temperature from 225 K to 6 K, and the ET data contained the same trend observed for the PL of isolated nanoclusters. The application of magnetic fields to increase nanocrystal ET efficiency was studied using magneto-photoluminescence measurements recorded at a sample temperature of 1.6 K. We demonstrated that the exciton fine structure population of the donor was varied using applied magnetic fields, which in turn dictated the PL yield and the resultant ET efficiency of the CdSe nanocrystal aggregate system. The experimental data indicated an ET efficiency enhancement of approximately 7%, which was limited by the random orientation of the spherical nanocrystals in the thin film.  相似文献   

2.
Silicon is a rather inefficient light emitter due to the indirect band gap electronic structure, requiring a phonon to balance the electron momentum during the interband transition. Fortunately, momentum requirements are relaxed in the 1-5 nm diameter Si crystals as a result of quantum confinement effects, and bright photoluminescence (PL) in the UV-vis range is achieved. Photoluminescent Si nanocrystals along with the C- and SiC-based nanoparticles are considered bioinert and may lead to the development of biocompatible and smaller probes than the well-known metal chalcogenide-based quantum dots. Published Si nanocrystal production procedures typically do not allow for the fine control of the particle size. An accepted way to make the H-terminated Si nanocrystals consists of anodic Si wafer etching with the subsequent breakup of the porous film in an ultrasound bath. Resulting H-termination provides a useful platform for further chemical derivatization and conjugation to biomolecules. However, a rather polydisperse mixture is produced following the ultrasonic treatment, leading to the distributed band gap energies and the extent of surface passivation. From the technological point of view, a homogeneous nanoparticle size mixture is highly desirable. In this study, we offer an efficient way to reduce the H-terminated Si nanocrystal diameter and narrow size distribution through photocatalyzed dissolution in a HF/HNO3 acid mixture. Si particles were produced using the lateral etching of a Si wafer in a HF/EtOH/H2O bath followed by sonication in deaerated methanol. Initial suspensions exhibited broad photoluminescence in the red spectral region. Photoassisted etching was carried out by adding the HF/HNO3 acid mixture to the suspension and exposing it to a 340 nm light. Photoluminescence and absorbance spectra, measured during dissolution, show the gradual particle size decrease as confirmed by the photoluminescence blue shift. The simultaneous narrowing of the photoluminescence spectral bandwidth suggests that the dissolution rate varies with the particle size. We show that the Si nanoparticle dissolution rate depends on the amount of light adsorbed by the particle and accounts for the etching rate variation with the particle size. Significant improvement in the PL quantum yield is observed during the acid treatment, suggesting improvement in the dangling bond passivation.  相似文献   

3.
Surface ligand dynamics in growth of nanocrystals   总被引:2,自引:0,他引:2  
Amine ligands were identified to bond on the surface of CdSe nanocrystals in a dynamic fashion under elevated temperatures in the reproducible growth domain of the specific designed growth reactions. The surface ligand dynamics was found to strongly depend on the growth temperature, the ligand concentration, and the ligand chain length. The strong chain-length dependence was originated from the interligand interactions in the ligand monolayer of a nanocrystal, provided fatty amines being weak ligands for CdSe nanocrystals. When the growth reaction was above the boiling point of an amine ligand, the surface ligand dynamics was violent, a quasi-gas-phase state, indicated by strong temperature-dependent and fast growth rates of the nanocrystals. Approximately below its boiling point, a significantly weak temperature dependence of the growth rate of the nanocrystals associated with the quasi-liquid state of the surface ligands was observed. A direct result of studying the surface ligand dynamics of this well-established nanocrystal system was the formation of high-quality CdSe nanocrystals under much reduced temperature, 150 degrees C, in comparison to the standard 250-350 degrees C temperature range. This was achieved by using fatty amines with a short hydrocarbon chain at a low ligand concentration in the solution. Preliminary results indicate that a similar temperature (160 degrees C) also worked for the growth of InP nanocrystals.  相似文献   

4.
The surface chemistry of cadmium selenide nanocrystals, prepared from tri-n-octylphosphine selenide and cadmium octadecylphosphonate in tri-n-octylphosphine oxide, was studied with 1H and {1H}31P NMR spectroscopy as well as ESI-MS and XPS. The identity of the surface ligands was inferred from reaction of nanocrystals with Me3Si-X (X = -S-SiMe3, -Se-SiMe3, -Cl and -S-(CH2CH2O)4OCH3)) and unambiguous assignment of the organic byproducts, O,O'-bis(trimethylsilyl)octadecylphosphonic acid ester and O,O'-bis(trimethylsilyl)ocatdecylphosphonic acid anhydride ester. Nanocrystals isolated from these reactions have undergone exchange of the octadecylphosphonate ligands for -X as was shown by 1H NMR (X = -S-(CH2CH2O)4OCH3) and XPS (X = -Cl). Addition of free thiols to as prepared nanocrystals results in binding of the thiol to the particle surface and quenching of the nanocrystal fluorescence. Isolation of the thiol-ligated nanocrystals shows this chemisorption proceeds without displacement of the octadecylphosphonate ligands, suggesting the presence of unoccupied Lewis-acidic sites on the particle surface. In the presence of added triethylamine, however, the octadecylphosphonate ligands are readily displaced from the particle surface as was shown with 1H and {1H}31P NMR. These results, in conjunction with previous literature reports, indicate that as-prepared nanocrystal surfaces are terminated by X-type binding of octadecylphosphonate moieties to a layer of excess cadmium ions.  相似文献   

5.
As an analogue to thermally activated delayed fluorescence (TADF) of organic molecules, thermally activated delayed photoluminescence (TADPL) observed in molecule-functionalized semiconductor nanocrystals represents an exotic mechanism to harvest energy from dark molecular triplets and to obtain controllable, long-lived PL from nanocrystals. The reported TADPL systems have successfully covered the visible spectrum. However, TADF molecules already emit very efficiently in the visible, diminishing the technological impact of the less-efficient nanocrystal-molecule TADPL. Here we report bright, near-infrared TADPL in lead-free CuInSe2 nanocrystals functionalized with carboxylated tetracene ligands, which results from efficient triplet energy transfer from photoexcited nanocrystals to ligands, followed with thermally activated reverse energy transfer from ligand triplets back to nanocrystals. This strategy prolonged the nanocrystal exciton lifetime from 100 ns to 60 μs at room temperature.  相似文献   

6.
A new family of ligands for the surface functionalization of CdSe nanocrystals is proposed, namely alkyl or aryl derivatives of carbodithioic acids (R-C(S)SH). The main advantages of these new ligands are as follows: they nearly quantitatively exchange the initial surface ligands (TOPO) in very mild conditions; they significantly improve the resistance of nanocrystals against photooxidation because of their ability of strong chelate-type binding to metal atoms; their relatively simple preparation via Grignard intermediates facilitates the development of new bifunctional ligands containing, in addition to the anchoring carbodithioate group, a second function, which enables the grafting of molecules or macromolecules of interest on the nanocrystal surface. To give an example of this approach, we report, for the first time, the grafting of an electroactive oligomer from the polyaniline family-aniline tetramer-on CdSe nanocrystals after their functionalization with 4-formyldithiobenzoic acid. The grafting proceeds via a condensation reaction between the aldehyde group of the ligand and the terminal primary amine group of the tetramer. The resulting organic/inorganic hybrid exhibits complete extinction of the fluorescence of its constituents, indicating efficient charge or energy transfer between the organic and the inorganic semiconductors.  相似文献   

7.
Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols   总被引:14,自引:0,他引:14  
The photochemical instability of CdSe nanocrystals coated by hydrophilic thiols was studied nondestructively and systematically in water. The results revealed that the photochemical instability of the nanocrystals actually included three distinguishable processes, namely the photocatalytic oxidation of the thiol ligands on the surface of nanocrystals, the photooxidation of the nanocrystals, and the precipitation of the nanocrystals. At first, the thiol ligands on the surface of a nanocrystal were gradually photocatalytically oxidized using the CdSe nanocrystal core as the photocatalyst. This photocatalytic oxidation process was observed as a zero-order reaction in terms of the concentration of the free thiols in the solution. The photogenerated holes in a nanocrystal were trapped onto the thiol ligands bound on the surface of the nanocrystal, which initiated the photooxidation of the ligands and protected the nanocrystal from any photooxidation. After nearly all of the thiol ligands on the surface of the nanocrystals were converted into disulfides, the system underwent several different pathways. If the disulfides were soluble in water, then all of the disulfides fell into the solution at the end of this initial process, and the nanocrystals precipitated out of the solution without much variation over their size and size distribution. When the disulfides were insoluble in water, they likely formed a micelle-like structure around the nanocrystal core and kept it soluble in the solution. In this case, the nanocrystals only precipitated after severe oxidation, which took a long period of time. If the system contained excess free thiol ligands, they replaced the photochemically generated disulfides and maintained the stability and solubility of the nanocrystals. The initiation stage of the photooxidation of CdSe nanocrystals themselves increased as the thickness and packing density of the ligand shell increased. This was explained by considering the ligand shell on the surface of a nanocrystal as the diffusion barrier of the oxygen species from the bulk solution into the interface between the nanocrystal and the surface ligands. Experimental results clearly indicated that the initiation stage of the photooxidation was not caused by the chemical oxidation of the system kept in air under dark conditions or the hydrolysis of the cadmium-thiol bonds on the surface of the nanocrystals, both of which were magnitudes slower than the photocatalytic oxidation of the surface ligands if they occurred at all. The results described in this contribution have already been applied for designing new types of thiol ligands which dramatically improved the photochemical stability of CdSe nanocrystals with a ligand shell that is as thin as approximately 1 nm.  相似文献   

8.
When reacted with trioctylphosphine at approximately 360 degrees C, rhodium nanocrystals convert to rhodium phosphide Rh(2)P nanocrystals. Careful control over synthetic variables, such as temperature, stabilizing ligands, and cosolvents, can result in Rh(2)P nanocrystals with shapes that reflect the Rh nanocrystal templates. Accordingly, Rh nanocrystals with multipod, cube- and triangle-derived shapes convert to Rh(2)P nanocrystals that maintain the shape of their Rh precursors. Both dense and hollow Rh(2)P nanocrystals can be generated using a single unified chemical conversion strategy. These empirical guidelines for generating a morphologically diverse library of Rh(2)P nanocrystals provide important insights into shape conservation using nanocrystal templates and will likely be portable to other multielement systems for which rigorous shape-controlled synthesis remains challenging.  相似文献   

9.
We demonstrate the ability to use a photolithographic method to make patterned nanocrystal film for device applications. Exposing a nanocrystal film to strong UV light allowed the oleic acid ligands on the surface of the nanocrystals to form an insoluble cross-linked network while the unexposed areas were still soluble to toluene solvent. Therefore, the UV light exposure through a shadow mask followed by solvent rinsing produced a small feature size on the order of 2 mum. We also report that the integrated nanocrystal patterns in an organic light-emitting diode show clear electroluminescence from the nanocrystals.  相似文献   

10.
We have synthesized CdSe nanocrystals (NCs) in sizes from 2.2 to 5.1 nm passivated with hydrophobic trioctylphosphine oxide (TOPO) in combination trioctylphosphine (TOP) or tributylphosphine (TBP) to obtain particles of the type CdSe/TOPO/TOP or CdSe/TOPO/TBP. These NCs were then dispersed in aqueous solution of ionic or non-ionic surfactants (such as stearate, oleic acid, Tween) using a biphase (water and chloroform or hexane) transfer method. It is found that both the structure of the surfactant and the native surface of the ligand govern the coating of the NCs with surfactants. More specifically, the hydrophobicity-hydrophilicity balance of the surfactant regulates the coating efficacy, thereby transferring the NC from the organic to the aqueous phase. The type of ligand on the NCs and the kind of coating surfactant also affect photoluminescence (PL). The ratio of PL and absorbance unit (defined as PL per 0.1 AU) was implemented as a tool to monitor changes in PL intensity and wavelength as a function of size, coatings and surface defects. Finally, the distribution of CdSe nanocrystals between pseudophases in cloud point extraction was discussed based on experimental results. It was concluded that the size of CdSe nanocrystal present in an appropriate pseudophase is correlated with the way in which the non-ionic surfactant coats CdSe nanocrystals.
Figure
Coating of CdSe semiconductor nanocrystals with surfactants impacts nanocrystals’ spectral features. Absorbance of first exciton absorption band was used to estimate ability of surfactant to disperse CdSe nanocrystals. Photoluminescence (PL) intensity and position of PL band were analysed in terms of nanocrystal’s surface phenomena via surfactants applied for coating.  相似文献   

11.
A method, pseudo steady-state titration, is introduced for determining the precipitation pH of nanocrystals coated by electron-donating ligands. CdSe nanocrystals coated with hydrophilic deprotonated thiol (thiolate) ligands were studied systematically. For comparison, CdTe and CdS nanocrystals coated with the same types of ligands were also examined. The results show that the precipitation of the nanocrystals is caused by the dissociation of the nanocrystal-ligand coordinating bonds from the nanocrystal surface. The ligands are removed from the surface due to protonation in a relatively low pH range, between 2 and 7 depending on the size, approximately within the quantum confinement size regime, and chemical composition (band gap) of the nanocrystals. In contrast, the redispersion of the nanocrystals was found to be solely determined by the deprotonation of the ligands. The size-dependent dissociation pH of the ligands was tentatively used as a means for determining the size-dependent free energy associated with the formation of a nanocrystal-ligand coordinating bond.  相似文献   

12.
Colloidal InP quantum rods (QRs) having controlled diameters and lengths are grown by the solution-liquid-solid method, from Bi nanoparticles in the presence of hexadecylamine and other conventional quantum dot surfactants. These quantum rods show band-edge photoluminescence after HF photochemical etching. Photoluminescence efficiency is further enhanced after the Bi tips are selectively removed from the QRs by oleic acid etching. The QRs are anisotropically 3D confined, the nature of which is compared to the corresponding isotropic 3D confinement in quantum dots and 2D confinement in quantum wires. The 3D-2D rod-wire transition length is experimentally determined to be 25 nm, which is about 2 times the bulk InP exciton Bohr radius (of approximately 11 nm).  相似文献   

13.
Exciton coupling may arise when chromophores are brought into close spatial proximity. Herein the intra‐nanocrystal exciton coupling of the surface complexes formed by coordination of 8‐hydroxyquinoline to ZnS nanocrystals (NCs) is reported. It is studied by absorption, photoluminescence (PL), PL excitation (PLE), and PL lifetime measurements. The exciton coupling of the surface complexes tunes the PL color and broadens the absorption and PLE windows of the NCs, and thus is a potential strategy for improving the light‐harvesting efficiency of NC solar cells and photocatalysts.  相似文献   

14.
All-inorganic colloidal nanocrystals were synthesized by replacing organic capping ligands on chemically synthesized nanocrystals with metal-free inorganic ions such as S(2-), HS(-), Se(2-), HSe(-), Te(2-), HTe(-), TeS(3)(2-), OH(-) and NH(2)(-). These simple ligands adhered to the NC surface and provided colloidal stability in polar solvents. The versatility of such ligand exchange has been demonstrated for various semiconductor and metal nanocrystals of different size and shape. We showed that the key aspects of Pearson's hard and soft acids and bases (HSAB) principle, originally developed for metal coordination compounds, can be applied to the bonding of molecular species to the nanocrystal surface. The use of small inorganic ligands instead of traditional ligands with long hydrocarbon tails facilitated the charge transport between individual nanocrystals and opened up interesting opportunities for device integration of colloidal nanostructures.  相似文献   

15.
Here, 5 nm Ag nanocrystals are deposited, using the same procedure, on various substrates differing by their rms roughness, wetting properties and nanoparticle-substrate interactions leading, consequently, to different nanocrystal orderings. Theoretical calculations are carried out to understand how these parameters influence the size of the nanocrystal organizations on the substrate surface. When these nanocrystal arrays are subjected to an oxygen plasma treatment, the nanocrystals perfectly assembled in hexagonal networks remain intact, while the nanocrystals that are not well-packed coalesce to form larger particles independently on the used substrate. This phenomenon is observed on the entire substrate surface. This procedure gives an innovative way of using oxygen plasma generated by the reactive ion etching technique, as a new method to reveal defects in 2D Ag nanocrystal self-assemblies.  相似文献   

16.
The ability to harness charges and spins for control of organic excitonic states is critical in developing high-performance organic luminophores and optoelectronic devices. Here we report a facile strategy to efficiently manipulate the electronic energy states of various organic phosphors by coupling them with inorganic lanthanide nanocrystals. We show that the metallic atoms exposed on the nanocrystal surface can introduce strong coupling effects to 9-(4-ethoxy-6-phenyl-1,3,5-triazin-2-yl)-9H-carbazole (OCzT) and some organic chromophores with carbazole functional groups when the organics are approaching the nanocrystals. This unconventional organic–inorganic hybridization enables a nearly 100 % conversion of the singlet excitation to fast charge transfer luminescence that does not exist in pristine organics, which broadens the utility of organic phosphors in hybrid systems.  相似文献   

17.
Solution nuclear magnetic resonance spectroscopy (NMR) is used to identify and quantify the organic capping of colloidal PbSe nanocrystals (Q-PbSe). We find that the capping consists primarily of tightly bound oleic acid ligands. Only a minor part of the ligand shell (0-5% with respect to the number of oleic acid ligands) is composed of tri- n-octylphosphine. As a result, tuning of the Q-PbSe size during synthesis is achieved by varying the oleic acid concentration. By combining the NMR results with inductively coupled plasma mass spectrometry, a complete Q-PbSe structural model of semiconductor core and organic ligands is constructed. The nanocrystals are nonstoichiometric, with a surface that is composed of lead atoms. The absence of surface selenium atoms is in accordance with an oleic acid ligand shell. NMR results on a Q-PbSe suspension, stored under ambient conditions, suggest that oxidation leads to the loss of oleic acid ligands and surface Pb atoms, forming dissolved lead oleate.  相似文献   

18.
Self-selected recovery of the photoluminescence (PL) of amphiphilic polymer encapsulated PbS quantum dots (QDs) was observed in water for the first time and possible mechanisms were proposed based on investigations by means of transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction and fluorescence spectroscopy. Water-soluble PbS QDs were synthesized by transferring monodispersed QDs capped with hydrophobic ligands of oleylamine from an organic solvent into water via amphiphilic polymers poly(maleic anhydride-alt-1-octadecene-co-poly(ethylene glycol)). The water transfer process leads to a double size distribution (5.6 ± 0.9 nm and 2.7 ± 0.4 nm), attributed to ligand etching together with Ostwald ripening, as well as the fast decay of PL. The automatic recovery of the PL in PbS QDs stored in water in the dark for 3 months was only observed for the subset of smaller QDs and is largely due to the removal of surface defects with aging, as evidenced by the decreased percentage of unpassivated surface atoms from XPS studies. In contrast, the PL of the subset of larger QDs in the same sample does not self-recover in water and can only be slightly recovered by transferring them into environments with less external quenches. The results strongly suggest that it is the surface defect in the larger QDs themselves, introduced during Ostwald ripening, that is primarily responsible for their non-emitting status or rather low PL intensity under different conditions. The increase of unpassivated Pb atoms in larger PbS QDs after the 3 month aging has been confirmed by XPS, which explains their non-recovery behavior in water. The PL-recovered QD sample in water is very stable and shows comparable photostability to the initial QDs dispersed in an organic phase.  相似文献   

19.
采用液体-固体-溶液法(LSS)制备单分散CdS纳米晶;通过自由基聚合制备单分散CdS纳米晶/聚N-异丙基丙烯酰胺(CdS/PNIPAM)复合温敏水凝胶.采用HRTEM、XRD、FTIR、DSC、PL等对CdS纳米晶、CdS/PNIPAM温敏复合凝胶的微观结构与性能进行了表征,变温荧光光谱研究了温度对凝胶荧光性能的影响.结果表明,CdS纳米晶粒径约为2.8 nm,单分散性良好;复合凝胶的荧光发射强度与环境温度存在一定的关联性,且呈可逆性.  相似文献   

20.
We demonstrate that performing a replacement reaction on single crystalline Ag nanospheres of approximately 10 nm in diameter in an organic solvent produces hollow Au nanocrystals with an octahedral shape. Different from those Au shells made by starting with Ag particles about 1 order of magnitude larger, which largely reproduce that of the sacrificial Ag counterparts, the hollow nanocrystals obtained in this work show significant changes in the external morphology from the spherical Ag precursors. This evolution of a faceted external morphology during chemical transformation is made possible by the enhanced role of surface effects in our smaller nanocrystals. The competition between the Au atom deposition and Ag atom dissolution on various nanocrystal surfaces is believed to determine the final octahedral shape of the hollow Au nanocrystals. Simultaneous achievement of surface-mediated shape control and a hollow morphology in a one-pot, single-step synthetic procedure in this study promises an avenue to finer tuning of particle morphology, and thus physical properties such as surface plasmon resonance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号