首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 245 毫秒
1.
SO_4~(2–)/M_xO_y型固体超强酸催化剂具有活性高、无污染、不腐蚀设备和可重复使用等优点,是一种典型的环境友好型催化剂。本文讨论了浸渍沉淀法、溶胶-凝胶法、低温陈化法和超声波共沉淀法4种制备方法对催化剂催化性能的影响。重点综述了SO_4~(2–)/M_xO_y型固体超强酸催化剂在载体和活性组分改性方面的研究进展。根据固体超强酸催化剂的结构模型,分析了SO_4~(2–)/M_xO_y型固体超强酸的成酸机理,介绍了催化剂的失活机理、表征手段以及在各个领域的应用实例,最后对SO_4~(2–)/M_xO_y型固体超强酸催化剂的结构理论和制备技术进行了展望。  相似文献   

2.
介绍固体超强酸催化剂的发展、特点、应用及改性研究方向,研究催化剂酸强度低、催化剂易失活和稳定性差等问题,并提出解决方案。通过对国内外SO_4~(2-)/M_xO_y型固体超强酸催化剂的研究,分析向载体中引入稀土元素、分子筛、其他金属、纳米材料和交联剂对固体超强酸催化剂催化活性、热稳定性、酸性、比表面积和晶型等的影响,综述采用S2O2-8或硫酸盐替换SO_4~(2-)作为催化剂活性组分对催化剂的催化活性、酸强度及结构等的影响以及引入过渡金属(贵金属)形成的双官能团对催化剂结构与活性的影响,对制约SO_4~(2-)/M_xO_y型固体超强酸催化剂研究与工业化应用的催化剂寿命、稳定性、机械强度、合成方法、催化活性及催化剂再生等问题进行探讨。  相似文献   

3.
SO4^2-/MxOy型固体超强酸催化剂的研究进展   总被引:5,自引:0,他引:5  
SO_4~(2-)/M_xO_y型固体超强酸催化剂具有高酸催化活性、易分离、不腐蚀等优点,在酯化、异构化、烷基化、酰基化、聚合等合成工业上有广泛的应用前景,现已成为国内外研究的热点。本文主要介绍了SO_4~(2-)/M_xO_y型固体超强酸催化剂的制备方法及制备条件对其性能的影响。  相似文献   

4.
用SO_4~(2-)/M_xO_y型固体超强酸催化剂酯化反应,考察了催化剂的制备条件对酯化反应的影响,评选出几种催化剂的最佳制备条件及催化活性较高的催化剂。  相似文献   

5.
为了进一步揭示固体超强酸SO_4~(2-)/M_xO_y"一锅法"催化合成马来酸酐类共聚物阻垢剂的作用机理,采用"分步合成法"探讨了以固体超强酸SO_4~(2-)/ZnO或SO_4~(2-)/TiO_2-SiO_2为催化剂,马来酸酐(MA)为催化底物,分别与马来酸酐(MA)、烯丙基磺酸钠(SAS)、苯乙烯基磺酸钠(SSS)发生共聚作用,合成共聚物阻垢剂PESA、MA/SAS及MA/SSS,并对其碳酸钙垢的阻垢效率进行评价。结果表明,采用"分步合成法"制备的共聚物阻垢剂对碳酸钙垢的阻垢效率分别为95.8%(MA/SAS)、90%(PESA)及93%(MA/SSS),与"一锅法"的阻垢效率基本一致。同时,实验采用固体酸SO_4~(2-)/ZnO或SO_4~(2-)/TiO_2-SiO_2分别对马来酸酐(MA)、烯丙基磺酸钠(SAS)及苯乙烯基磺酸钠(SSS)的环氧化反应进行评价。结果表明,固体超强对马来酸酐(MA)环氧化作用时,可成功地分离出马来酸酐的环氧化物——环氧马来酸,相比催化底物烯丙基磺酸钠(SAS)和苯乙烯基磺酸钠(SSS)而言,实验并未分离出相应的环氧化物。另外,以环氧琥珀酸的生成率为固体超强酸的催化活性指标,在较优的催化条件下,实验成功地评价了不同类型固体超强酸SO_4~(2-)/M_xO_y催化环氧化反应的催化活性。结果表明,在相同条件下,固体超强酸SO_4~(2-)/ZnO、SO_4~(2-)/Al_2O_3、SO_4~(2-)/Fe_2O_3、SO_4~(2-)/ZrO_2、SO_4~(2-)/TiO_2-SiO_2、SO_4~(2-)/SiO_2-Al_2O_3及SO_4~(2-)/ZrO_2-TiO_2对马来酸酐的环氧化作用,环氧琥珀酸的生成率分别为20%、12%、8%、10.2%、8.9%、7.1%及9.8%,其对应的催化剂催化活性为SO_4~(2-)/ZnOSO_4~(2-)/Al_2O_3SO_4~(2-)/ZrO_2SO_4~(2-)/ZrO_2-TiO_2SO_4~(2-)/TiO_2-SiO_2SO_4~(2-)/Fe_2O_3SO_4~(2-)/SiO_2-Al_2O_3。  相似文献   

6.
通过沉淀-浸渍法制备了一系列金属离子(Ni~(2+),Co~(2+),Fe~(3+))改性的SO_4~(2-)/SnO_2固体超强酸(SS)。利用BET、FT-IR、XRD、TGA等测试技术对固体超强酸进行表征。以乙酸和正丁醇的酯化反应为探针反应,考察了固体超强酸催化剂的催化活性。结果表明:引入金属离子后使SnO_2衍射峰强度降低,晶粒减小,比表面积增大,从而使活性增加。TG-DTA结果表明金属离子的引入,有利于提高催化剂的热稳定性,Ni~(2+)改性的催化剂较Co~(2+),Fe~(3+)改性的催化剂的热稳定性更好,可以较好地稳定活性组分SO_4~(2-),使其高温分解流失趋势变得更缓和。制备Ni/SO_4~(2-)-SnO_2最优条件为焙烧温度为500℃,镍离子浓度为0.5mol/L。  相似文献   

7.
采用沉淀浸渍法制备了SO_4~(2-)/ZrO_2固体超强酸催化剂,利用Hammett指示剂、红外光谱仪和粉末X射线衍射仪对其进行表征。以乙酸正丁酯的合成为探针反应,考察硫酸浸渍浓度、焙烧时间和焙烧温度对其催化活性的影响。结果表明,SO_4~(2-)/ZrO_2固体超强酸具有较好的催化活性,当硫酸浸渍浓度为1.0mol·L~(-1)、焙烧温度为600℃、焙烧时间为3h时,SO_4~(2-)/ZrO_2超强酸的催化活性最高,酯化反应的酯化率达到97%。  相似文献   

8.
为了制备性能稳定的高活性α-甲基萘异构化催化剂,对合成的SO_4~(2-)/ZrO_2固体超强酸催化剂进行了多种金属离子掺杂改性。并在固体床反应器中考察了催化剂改性方法、反应温度、反应压力以及空速对改性催化剂催化α-甲基萘异构化反应性能的影响。结果表明,反相共沉淀法并且铝掺杂2%的SO_4~(2-)/ZrO_2固体超强酸催化剂性能最佳,在床层温度230℃,反应压力1.0 MPa,α-甲基萘重时空速(WHSV)为1.0 h~(-1)的优化反应条件下,原料α-甲基萘转化率大于70%,产物β-甲基萘的选择性大于95%,重组分选择性小于0.2%。催化剂的稳定性和再生实验结果表明催化剂再生性能优良,具有良好的工业应用前景。  相似文献   

9.
将SO_4~(2-)/M_xO_y型固体超强酸按负载体金属氧化物的种类不同进行分类,简单介绍了不同类型固体超强酸的制备和在有机反应中的应用。分析了限制固体酸发展的原因并展望固体酸今后的发展方向,提出了利用工业废弃物粉煤灰和工业副产物为原料制备固体酸的建议,此法可降低催化剂的制备成本,为固体酸的工业化实现提供了一条行之有效的道路。  相似文献   

10.
以SO_4~(2-)/M_xO_y型固体酸作为水解催化剂,对2-膦酸丁烷-1,2,4-三羧酸五甲酯水解制备2-膦酸丁烷-1,2,4-三羧酸(PBTCA)的反应进行了研究,探讨了催化剂加入量、水酯比、反应温度以及反应时间对水解转化率的影响,确定了反应的最佳工艺条件。结果表明,以SO_4~(2-)/M_xO_y型固体酸催化水解PBTC五甲酯,能有效缩短水解反应时间,提高产品质量,并且催化剂活性高、用量少,产品经~(31)PNMR谱测定,PBTCA物质的量分数达91.6%。  相似文献   

11.
采用化学共沉淀法制备出了三元固体超强酸催化剂SO_4~(2-)/V_2O_5-TiO_2-La_2O_3,并通过合成乙酸乙酯的酯化探针反应考察了影响SO_4~(2-)/V_2O_5-TiO_2-La_2O_3三元固体酸催化剂催化活性的制备因素。结果表明SO_4~(2-)/V_2O_5-TiO_2-La_2O_3固体超强酸催化剂的最佳制备条件为:组分比例n(V_2O_5)∶n(TiO_2)∶n(La_2O_3)=1∶1∶1,焙烧温度500℃,焙烧时间3 h,乙酸乙酯合成酯化率为98.31%。  相似文献   

12.
硫酸根/氧化钛—氧化镧催化合成苯甲醛1,2—丙二醇缩醛   总被引:2,自引:0,他引:2  
以稀土改性固体超强酸SO_4~(2-)/TiO_2—La_2O_3为催化剂,通过苯甲醛和1,2—丙二醇反应合成了苯甲醛1,2—丙二醇缩醛,探讨了SO_4~(2-)/TiO_2—La_2O_3对缩醛反应的催化活性,研究了醛醇物质的量比、催化剂用量、反应时间等对产品收率的影响。实验表明,SO_4~(2-)/TiO_2—La_2O_3是合成苯甲醛1,2—丙二醇缩醛的良好催化剂,在n(醇):n(醛)=2.25:1,催化剂用量为反应物料总质量的0.50%,环己烷为带水剂,反应时间50min的优化条件下,苯甲醛1,2—丙二醇缩醛的收率可达80.8%。  相似文献   

13.
将落叶松树皮多聚原花青素解聚为高活性高附加值的低聚原花青素,具有重要应用价值。本文探讨了将SO_4~(2-)/ZrO_2固体超强酸为催化剂氢解LPPC,结果表明,在高压氢解条件下,SO_4~(2-)/ZrO_2固体超强酸对多聚原花青素有较好的解聚作用,各因素对解聚产率影响由大到小分别为温度、催化剂用量、时间;较优工艺条件为反应时间2 h,反应温度100℃,0.35 g SO_4~(2-)/ZrO_2固体超强酸催化剂,该工艺条件下多聚原花青素的解聚产率可到39.17%。本研究为多聚原花青素的解聚提供了有益探索。  相似文献   

14.
采用固体超强酸SO_4~(2-)/TiO_2和分子筛改性固体超强酸SO_4~(2-)/TiO_2/USY作为脱氮剂脱除柴油中碱性氮化物,对两者的脱氮效果进行比较,选取合适的脱氮剂,并考察了脱氮剂与柴油质量比、反应温度、搅拌时间和沉降时间对碱性氮化物脱除效果的影响。结果表明,分子筛改性后固体超强酸的脱氮能力有较大提高,且增大脱氮剂与柴油质量比、升高反应温度、延长搅拌时间和沉降时间均可提高柴油中碱性氮化物的脱除率。选取SO_4~(2-)/TiO_2/USY作为脱氮剂,当其与柴油质量比为6:100、反应温度20℃、搅拌时间30 min和沉降时间60 min,柴油中碱性氮的脱除率达78.36%,柴油回收率可达84.37%。  相似文献   

15.
利用共沉淀-浸渍法制得固体超强酸SO_4~(2-)/TiO_2/高岭土。以丙二酸和无水乙醇为原料,SO_4~(2-)/TiO_2/高岭土为催化剂,催化合成丙二酸二乙酯。考察了合成时间、不同带水剂、带水剂使用量、n(乙醇)∶n(丙二酸)、催化剂使用量、催化剂的重复使用性能等反应条件对酯化反应效率的影响。结果表明,在n(丙二酸)=0.10 mol、n(乙醇)∶n(丙二酸)=3.0、w(催化剂)=7%、带水剂V(环己烷)=5 mL、t=3 h的条件下,酯化率可达89.60%,催化剂重复使用6次,仍具有较高的活性,表明固体超强酸SO_4~(2-)/TiO_2/高岭土催化剂具有良好的催化活性和重复使用性,可以广泛应用于催化反应中。  相似文献   

16.
对SO_4~(2-)/M_xO_y多种固体酸催化蒽醌的定位硝化工艺进行了研究,从中优选出SO_4~(2-)/ZrO_2固体酸作为蒽醌定位硝化催化剂。在m(蒽醌):m(SO_4~(2-)/ZrO_2固体酸):m(二氯乙烷):m(浓硝酸)=100:2.5:124:36,反应温度41~42℃,反应时间4h等工艺条件下,1-硝基蒽醌粗品含量由混酸硝化工艺的81.81%提升到固体酸催化定位硝化工艺的89.68%,精品1-硝基蒽醌收率由82.59%提升到86.12%。  相似文献   

17.
综述了几种常见无机盐、固体超强酸ZrO_2/SO_4~(2-)和Fe_2O_3/SO_4~(2-)、超强酸树脂Dool-AlCl_3、磷钨杂多酸、钨锗杂多酸、TiSiW_(12)O_(40)/TiO_2等几种不同的催化剂催化合成丁酸丁酯,以及用丁醇电解直接合成丁酸丁酯的实验结果。结果表明,SnCl_2·2H_2O,Dool-AlCl_3,HPA和TiSiW_(12)O_(40)/TiO_2 4种催化剂对合成丁酸丁酯的酯收率较高,具有实际应用价值。  相似文献   

18.
制备了SO_4~(2-)/ZrO_2固体超强酸,用Hammett指示剂法测得其酸强度的函数H+0≤-14.52。试验表明,固体超强酸催化剂对于由苯乙烯和二甲苯合成PXE(1-苯基-1-二甲苯基乙烷)具有明显的催化活性,其反应产率在70%以上。  相似文献   

19.
采用共沉淀法制备固体超强酸SO_4~(2-)/TiO_2/La~(3+),并通过十四酸正丁酯酯化反应的酯化率考察催化剂制备因素对催化活性的影响。结果表明固体超强酸SO_4~(2-)/TiO_2/La~(3+)催化剂的最佳制备条件为:沉淀pH=9、n(La~(3+)/Ti~(2+))=1∶6、硫酸浸渍浓度为1.8 mol/L,焙烧温度为500℃、焙烧时间为3 h,十四酸正丁酯合成的平均酯化率均98%。  相似文献   

20.
本文研究了固体超强酸TiO_2/SO_4~(2-)催化乳酸与正丁醇的酯化反应,探讨了催化反应条件,发现固体超强酸TiO_2/SO_4~(2-)具有较高的催化活性,并使后处理简化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号