首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
碳纤维增强碳(C/C)复合材料是由沥青基碳纤维粗纱纺织的多层织物和煤沥青基体构成的,本次实验研究了两种C/C多层织物复合材料和一种平纹编织C/C布复合材料,测试了弯曲、剪切和压缩强度。根据不同跨距--高度比下的三点弯曲试验结果,表明C/C1多层织物复合材料具有高的剪切性能,多层织物复合材料的分层断裂比平纹编织C/C布复合材料具有更高的层间断裂韧性。  相似文献   

2.
碳/环氧复合材料中碳纤维具有良好的导电性,通过碳纤维之间相互接触使得复合材料也能导电。本文分析了在碳/环氧复合材料层间埋设电极、表层粘贴电极和铜夹电极对复合材料拉伸应力—电阻的影响。结果表明,层间埋设的电极与复合材料紧密接触,能够真实地反映碳/环氧复合材料的拉伸应力—电阻关系,可以作为电阻法复合材料力学性能自诊断的研究依据。  相似文献   

3.
三维编织复合材料以其高比刚度、高比强度以及优良的抗冲击、抗分层性能被广泛应用于航空航天领域。随着编织工艺的不断革新以及固化成型技术的持续发展,三维编织复合材料在一体化成型和大尺寸自动化编织上展示出得天独厚的优势。本文对三维编织机进行分类,讨论了三维编织与二维编织的区别,介绍了三维编织预成型体工艺的发展现状,对三维编织复合材料的应用现状进行总结。最后,对三维编织复合材料的应用前景进行了展望。  相似文献   

4.
采用真空辅助RTM成型方法制备了0.5%碳纳米纤维(CNF)玻纤/环氧(GF/EP)复合材料,并对其一维饱和渗透率、不同温度下的力学性能、耐固体粒子冲蚀磨损性能进行了测试和研究分析。实验结果表明,加入0.5%CNF之后,平行于纤维方向的饱和渗透率降低了2~6倍,垂直于纤维方向的饱和渗透率降低了2~5倍;在孔隙率小于0.44时,两个方向的饱和渗透率差别不大,均接近于零;0.5%CNF的加入对纯EP及垂直于纤维方向复合材料的机械性能和耐固体粒子冲蚀磨损性能影响较小,在平行于纤维方向上复合材料的力学性能和耐固体粒子冲蚀磨损性能均有提高;在不同温度下,0.5%CNF的加入使垂直纤维方向上复合材料拉伸强度的稳定性得到提高。  相似文献   

5.
采用真空辅助喷涂的方法制备了相对于玻纤质量分数1%、3%的碳纳米纤维/玻纤/环氧树脂基复合材料,并对其机械性能、耐固体粒子冲蚀磨损性能与纯环氧树脂(EP)、玻纤增强环氧树脂(FRP)进行了对比研究。结果表明:1%、3%碳纳米纤维的加入使得复合材料的拉伸强度达到72MPa、70MPa,相对于EP分别增加了20%、16.7%,相对于FRP分别降低了32.7%、30.7%;弯曲强度达到150MPa、178MPa,相对于EP分别增加了40.2%,66.4%,相对于FRP分别降低了19.8%、4.8%;侵蚀磨损试验中质量损失相对于FRP分别降低了75%、86.7%,在对复合材料机械强度影响较小的前提下大大提高了复合材料的耐磨损性能。  相似文献   

6.
张建艺 《玻璃钢》2006,(2):29-41
本研究的目的是开发一种在中等温度范围(371~649℃)内,抗氧化性能得到增强的碳/碳(C/C)复合材料。通过在C/C复合材料(CCC)固化前引入纳米相,通过阻止复合材料氧化过程,以维持并提高材料的机械强度。三种树脂系统:Lonza公司的低、中性粘度氰酸酯(CE),型号为PT-15和PT-30,以及Hitco 公司的酚醛,型号围为134A;同时利用三种类型的纳米颗粒:化学改性蒙脱石(MMT)有机金属粘土、多面体低聚氧化硅(POSS),纳米碳纤维得到CCC。利用广角X射线衍射装置(WAXD)和透射电子显微镜(TEM) 来确定分散度。对碳化及致密化分别制备了具有六种不同纳米结构体系的CCC,对这六种材料及一种基本 Hitco CC139分别在371℃和649℃的氮气中进行了24h的热老化处理。然后将这些材料置于加热的空气中达8h,用来模拟热-氧化的情形。最后测定了这些C/C纳米复合材料的力学性能如:抗拉强度和模量、泊松比和层间剪切强度等,并与基本的CCC做了比较。  相似文献   

7.
本文以玻璃纤维为原料,采用全自动模块组合旋转法三维编织平台制备1×1,1×2,1×3,2×2等四种三维全五向编织物,并分别与环氧树脂基体复合,制备三维全五向编织复合材料。借助Instron万能材料试验机测试上述四种材料的拉伸性能,探讨编织形式对材料拉伸性能的影响。结果表明,1×1编织结构形式的拉伸性能最好,1×3编织结构的最差;1×2编织结构形式的单纱强力利用率最高,1×3编织结构的最低。  相似文献   

8.
碳/碳复合材料作为新型结构材料具有优异的力学性能、低热膨胀系数、耐热冲击以及耐烧蚀等优异性能,在较宽的温域范围内拥有较好的抗蠕变性能和较高的强度保留率,是新材料领域重点研究和开发的一类战略性高技术材料。本文阐述了碳/碳复合材料的优势以及综述了碳/碳复合材料的发展阶段,重点针对航空航天、光伏产业、汽车、半导体、工业领域以及生物医学等领域进行应用探索,本文认为碳/碳复合材料正从过去的双元复合逐步向多元复合的方向发展,未来碳/碳复合材料会向多功能复合材料方向发展,其应用领域也将更加广泛。  相似文献   

9.
通过7组实验比较和分析研究,评价了编织结构参数(如编织角,纤维体积分数,轴向纱数与编织纱数之比,三维四向/五向,厚度)对复合材料拉伸性能的影响,且对复合材料的破坏模式进行了研究。实验结果表明,三维编织复合材料具有良好的力学性能,编织角、复合材料尺寸、纤维体积含量、轴向纱数与编织纱数之比等对复合材料的性能有较大的影响;复合材料有两种破坏模式,一种是裂纹沿纤维束扩展,另一种是纤维束拉断,后者为主要破坏模式。这些结果为三维编织复合材料的设计提供了依据。  相似文献   

10.
柯仁挺 《粘接》2022,49(3):192-196
针对传统C3N4半导体材料光催化活性和吸收系数都较低的问题,提出用纳米Ag进行改性,并以改性后的Ag-C3N4复合材料为检测基底,制备光电化学传感器,进而分析制备的光电传感器性能.结果表明:掺入Ag后,C3N4半导体材料光催化活性和吸收系数都有所提高;传感器最佳配方:Ag质量分数为3%,偏压0.5 V,四环素适配体浓度...  相似文献   

11.
碳纳米管纳米复合材料的研究现状及问题   总被引:1,自引:0,他引:1  
张丽  赫玉欣 《广东化工》2011,38(5):42-43,38
文章介绍了碳纳米管的结构和性能,综述了碳纳米管聚合物复合材料的制备方法及其聚合物结构复合材料和聚合物功能复合材料中的应用研究情况,在此基础上,分析了碳纳米管在复合材料制备过程中的纯化、分散、损伤和界面等问题,并展望了今后碳纳米管/聚合物复合材辩的发展趋势.  相似文献   

12.
Molecular dynamic simulation method has been employed to consider the critical buckling force, pressure, and strain of pristine and defected single-walled carbon nanotube (SWCNT) under axial compression. Effects of length, radius, chirality, Stone–Wales (SW) defect, and single vacancy (SV) defect on buckling behavior of SWCNTs have been studied. Obtained results indicate that axial stability of SWCNT reduces significantly due to topological defects. Critical buckling strain is more susceptible to defects than critical buckling force. Both SW and SV defects decrease the buckling mode of SWCNT. Comparative approach of this study leads to more reliable design of nanostructures.  相似文献   

13.
A novel approach for preparing nano-gold particles/carbon nanotube composites from gold film, poly(ferrocenylsilane) and acetylene has been developed. The morphologies of resultant nano-gold particles/carbon nanotube composites were examined. This paper is submitted to Journal of Inorganic and Organometallic Polymers and Materials to honor Professor Dr. Ian Manners.  相似文献   

14.
Interfacial adhesion between carbon fiber and epoxy resin plays an important role in determining performance of carbon–epoxy composites. The objective of this research is to determine the effect of fiber surface treatment (oxidization in air) on the mechanical properties (flexural strength and modulus, shear and impact strengths) of three‐dimensionally (3D) braided carbon‐fiber‐reinforced epoxy (C3D/EP) composites. Carbon fibers were air‐treated under various conditions to improve fiber–matrix adhesion. It is found that excessive oxidation will cause formation of micropits. These micropits are preferably formed in crevices of fiber surfaces. The micropits formed on fiber surfaces produce strengthened fiber–matrix bond, but cause great loss of fiber strength and is probably harmful to the overall performance of the corresponding composites. A trade‐off between the fiber–matrix bond and fiber strength loss should be considered. The effectiveness of fiber surface treatment on performance improvement of the C3D/EP composites was compared with that of the unidirectional carbon fiber–epoxy composites. In addition, the effects of fiber volume fraction (Vf) and braiding angle on relative performance improvements were determined. Results reveal obvious effects of Vf and braiding angle. A mechanism was proposed to explain the experimental phenomena. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1040–1046, 2002  相似文献   

15.
In recent years, three‐dimensionally (3D) braided composites have attracted a great deal of attention because of their high‐impact damage tolerance and fatigue life, superior fracture toughness, and so forth, and have been used in aeronautics, military, and transportation. These advantages make them strong candidates for osteosynthesis devices. In this study, 3D braided carbon fiber–epoxy (C3D/EP) composites were produced via a simple vacuum impregnation technique. The load‐deflection curve, mechanical properties, and influence of fiber volume fraction, braiding angle, and axial reinforcing fibers were examined to determine their suitability for internal fixation devices. It is found that the C3D/EP composites have excellent toughness and do not show brittleness when fractured because of their relatively high void content. The flexural, shear, and impact strengths of the C3D/EP composites are excellent. It was shown that a C3D/EP composite with a stiffness similar to load‐bearing bones can be made while maintaining enough strength. It is concluded that a relatively higher void content and braiding angle is more suitable for the C3D/EP composites from the viewpoint of requirements of fracture fixation materials. The moisture absorption behavior and changes in mechanical properties caused by moisture uptake were evaluated. Results show that absorbed moisture slightly decreases mechanical properties of the C3D/EP composites. Contrary to the unreinforced epoxy, the moisture absorption behavior of the C3D/EP composites cannot be described with Fick's law of diffusion, probably because of the presence of voids and/or 3D fiber structure. The exact mechanisms should be proposed in further investigations. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1031–1039, 2002  相似文献   

16.
Oxygen plasma was used to modify the surface properties of carbon fibers and their adhesion strength with an acrylate resin cured by electron beam. A characterization of the surface topography and the surface chemistry was carried out (topography at a micrometric and nanometric scale, specific surface area, temperature programmed desorption, and X-ray photoelectron spectroscopy). The topography remained unchanged. Regarding the surface chemistry, carboxylic acids, alcohols, lactones, and ethers were created and their location was at the outer surface of the fibers. A pull-out test was used to measure the adhesion strength with the acrylate resin cured by electron beam. For comparison, an isothermal UV curing was also investigated. The value of the interfacial shear strength was increased only in the case of UV curing. No improvement was observed with electron beam curing, which highlighted the generation of an interphase, the mechanical properties of which are dependent on the processing conditions.  相似文献   

17.
This work aims to enhance the value of palm empty fruit bunches (EFBs), an abundant residue from the palm oil industry, as a precursor for the synthesis of luminescent carbon dots (CDs). The mechanism of fIuorimetric sensing using carbon dots for either enhancing or quenching photoluminescence properties when binding with analytes is useful for the detection of ultra-low amounts of analytes. This study revealed that EFB-derived CDs via hydrothermal synthesis exceptionally exhibited luminescence properties. In addition, surface modification for specific binding to a target molecule substantially augmented their PL characteristics. Among the different nitrogen and sulfur (N and S) doping agents used, including urea (U), sulfate (S), p-phenylenediamine (P), and sodium thiosulfate (TS), the results showed that PTS-CDs from the co-doping of p-phenylenediamine and sodium thiosulfate exhibited the highest PL properties. From this study on the fluorimetric sensing of several metal ions, PTS-CDs could effectively detect Fe3+ with the highest selectivity by fluorescence quenching to 79.1% at a limit of detection (LOD) of 0.1 µmol L−1. The PL quenching of PTS-CDs was linearly correlated with the wide range of Fe3+ concentration, ranging from 5 to 400 µmol L−1 (R2 = 0.9933).  相似文献   

18.
Carbon materials particularly in the form of sparkling diamonds have held mankind spellbound for centuries, and in its other forms, like coal and coke continue to serve mankind as a fuel material, like carbon black, carbon fibers, carbon nanofibers and carbon nanotubes meet requirements of reinforcing filler in several applications. All these various forms of carbon are possible because of the element's unique hybridization ability. Graphene (a single two-dimensional layer of carbon atoms bonded together in the hexagonal graphite lattice), the basic building block of graphite, is at the epicenter of present-day materials research because of its high values of Young's modulus, fracture strength, thermal conductivity, specific surface area and fascinating transport phenomena leading to its use in multifarious applications like energy storage materials, liquid crystal devices, mechanical resonators and polymer composites. In this review, we focus on graphite and describe its various modifications for use as modified fillers in polymer matrices for creating polymer-carbon nanocomposites.  相似文献   

19.
The allotropes of carbon nanomaterials (carbon nanotubes, graphene) are the most unique and promising substances of the last decade. Due to their nanoscale diameter and high aspect ratio, a small amount of these nanomaterials can produce a dramatic improvement in the properties of their composite materials. Although carbon nanotubes (CNTs) and graphene exhibit numerous extraordinary properties, their reported commercialization is still limited due to their bundle and layer forming behavior. Functionalization of CNTs and graphene is essential for achieving their outstanding mechanical, electrical and biological functions and enhancing their dispersion in polymer matrices. A considerable portion of the recent publications on CNTs and graphene have focused on enhancing their dispersion and solubilization using covalent and non-covalent functionalization methods. This review article collectively introduces a variety of reactions (e.g. click chemistry, radical polymerization, electrochemical polymerization, dendritic polymers, block copolymers, etc.) for functionalization of CNTs and graphene and fabrication of their polymer nanocomposites. A critical comparison between CNTs and graphene has focused on the significance of different functionalization approaches on their composite properties. In particular, the mechanical, electrical, and thermal behaviors of functionalized nanomaterials as well as their importance in the preparation of advanced hybrid materials for structures, solar cells, fuel cells, supercapacitors, drug delivery, etc. have been discussed thoroughly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号