首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
采用液相氧化法合成氧化碳纤维,制备碳纤维/环氧树脂复合材料,研究了复合材料的力学性能和摩擦性能。结果表明,碳纤维经液相氧化后,复合材料的力学强度有所降低,但模量均有明显提高;碳纤维和氧化碳纤维能改善环氧树脂复合材料的摩擦性能,降低摩擦系数和减少磨损率,提高复合材料的耐磨性;复合材料的摩擦系数和磨损率均随着载荷和时间的增加而增大。由材料磨损表面的扫描电镜可知碳纤维/环氧树脂复合材料以磨粒磨损与粘着磨损为主,氧化碳纤维/环氧树脂复合材料以疲劳磨损和磨粒磨损为主。碳纤维和氧化碳纤维可以作为环氧基摩擦材料的增强材料,这一研究对于拓宽摩擦材料领域的研究发展具有重要意义和促进作用。  相似文献   

2.
酚醛树脂具有较好的机械加工性能以及极佳的耐热性能,但是酚醛树脂性脆,韧性差,采用环氧树脂对其进行共混改性可以提高酚醛树脂的韧性,但是会损失一定的热性能. 以碳纤维布作为增强材料,酚醛树脂,环氧树脂作为基体,经过浸渍,层压成型等工艺,制得碳纤维布增强酚醛环氧树脂复合材料. 通过比较不同质量分数的酚醛/环氧树脂质量比所制得的材料的力学性能,热性能及扫描电镜表征出的复合材料的微观结构,得出在环氧树脂质量分数为25%时,该复合材料的弯曲强度达到262.5 MPa,冲击强度达到62.3 kJ·m-2,相对于没有加入环氧树脂的碳纤维布增强酚醛环氧树脂复合材料,分别提高了23%和185%. 热形变温度达到158.8 ℃,相对于没有加入环氧树脂的复合材料减少了13%. 综合来看,环氧树脂质量分数在25%时,碳纤维布增强酚醛环氧树脂复合材料具有最佳的综合性能.  相似文献   

3.
为了改善碳纤维与树脂基体之间的界面性能,以噻吩为单体,采用循环伏安法对碳纤维进行电化学聚合改性.利用扫描电子显微镜研究了电化学聚合改性前后碳纤维的表面结构变化,采用电脑伺服控制材料试验机测试了碳纤维增强环氧树脂复合材料的力学性能.结果表明,当噻吩浓度为0.4 mol/L时,峰值电流增加幅度最大,电聚合效果最佳.当循环次数达到60次时,碳纤维表面电化学聚合反应完全,碳纤维/环氧树脂复合材料的层间剪切强度可由13.46 MPa增加到23.79 MPa,提高约76.75%.电化学聚合后大量片层状聚噻吩聚合物在碳纤维表面聚集,碳纤维与环氧树脂基体紧密结合,界面性能明显提高.  相似文献   

4.
本文选用树脂传递模塑成型(RTM)工艺制备(3K-T300,3312)碳纤维/环氧树脂复合材料,分别采用拉伸实验和弯曲实验研究复合材料的力学性能;并对样件的拉伸断口进行SEM观察,分析其失效形式。结果表明:碳纤维/环氧树脂复合材料的拉伸强度和弯曲强度分别为459.17MPa和576.82MPa;断口微观形貌表明环氧树脂充分浸润到碳纤维编织布层状界面和丝束之间的界面中,断口中碳纤维和环氧树脂脆性断裂以及碳纤维与环氧树脂界面裂纹萌生扩展并断裂是试样失效的机制,说明RTM具有较好的工艺应用性。  相似文献   

5.
针对导热复合材料中填料含量过多会导致力学等性能下降以及三维导热骨架中黏合剂与树脂基体相容性差的问题,本文采用牺牲盐模板法,制备了基于聚苯并噁嗪/氮化硼(PPH-ddm/BN)三维导热骨架,进一步与环氧树脂(epoxy, EP)复合,得到了环氧树脂/聚苯并噁嗪/氮化硼(EP/PPH-ddm/BN)复合材料。当BN质量分数为19%时,复合材料的导热系数为1.01 W·m-1·K-1,比纯环氧树脂提高了381%。归因于三维导热网络的形成以及聚苯并噁嗪和环氧树脂间良好的相容性,降低了氮化硼与树脂基体的界面热阻。骨架碳化后,环氧树脂/碳/氮化硼(EP/C/BN)复合材料的导热系数最高可达1.38 W·m-1·K-1,比纯环氧树脂提高了557%,为目前相同BN含量下聚合物基复合材料的最高值。复合材料的硬度与弯曲强度随BN含量增加而提高,相关研究为发展填料含量较低的热管理材料提供了新思路。  相似文献   

6.
以高密度聚乙烯和聚丙烯为基体材料,以碳纳米管和氮化硼颗粒为导热填料,通过熔融共混法制备了导热聚乙烯/聚丙烯复合材料;研究了聚乙烯和聚丙烯不同配比对复合材料力学性能和导热率的影响,同时探究了碳纳米管和氮化硼颗粒的配比对聚乙烯/聚丙烯复合材料力学性能、导热率、流动性、耐热性的影响。结果表明:复合材料的导热率随聚丙烯含量的增加而降低;当碳纳米管和氮化硼质量比为7∶3时,复合材料导热率最高,与不加导热填料的复合材料相比提高了30.46%。  相似文献   

7.
为了改善碳纤维与树脂基体之间的界面性能,以噻吩为单体,采用循环伏安法对碳纤维进行电化学聚合改性.利用扫描电子显微镜研究了电化学聚合改性前后碳纤维的表面结构变化,采用电脑伺服控制材料试验机测试了碳纤维增强环氧树脂复合材料的力学性能.结果表明,当噻吩浓度为0. 4 mol/L时,峰值电流增加幅度最大,电聚合效果最佳.当循环次数达到60次时,碳纤维表面电化学聚合反应完全,碳纤维/环氧树脂复合材料的层间剪切强度可由13. 46 MPa增加到23. 79 M Pa,提高约76. 75%.电化学聚合后大量片层状聚噻吩聚合物在碳纤维表面聚集,碳纤维与环氧树脂基体紧密结合,界面性能明显提高.  相似文献   

8.
研究在制备玻璃纤维增强酚醛树脂复合材料时,通过加入了碳纤维环氧树脂复合材料的粉末废料,目的是提高新复合材料的力学性能。对新制备的复合材料的拉伸性能和弯曲性能进行了测试分析。结果表明,在一定的比例范围内加入粉体的废物可以提高新复合材料的力学性能。  相似文献   

9.
水性环氧树脂(Water-borne epoxy, WEP)具有优异的形状记忆性能,但其力学性能差、导热系数低。为了改善WEP的力学和导热性能,以氧化石墨烯(Graphene oxide, GO)为填料制备GO/WEP形状记忆复合材料,采用原子力显微镜(AFM)、透射电子显微镜(TEM)、X射线光电子能谱仪(XPS)和X射线衍射(XRD)分析和表征GO的微观结构和化学性质,利用扫描电镜(SEM)、万能试验机、Hot Disk导热仪和热机械分析仪(TMA)测定和观察所得GO/WEP复合材料的微观形貌、力学性能、导热性能和形状记忆性能。研究结果表明:随GO含量的增加,制备所得GO/WEP形状记忆复合材料的力学性能与导热系数都得到显著提高;与WEP相比,GO含量为6 wt%的GO/WEP复合材料的拉伸强度与导热系数分别提高了80%和156%,但所得复合材料的断裂伸长率随GO含量的增加逐渐减小。  相似文献   

10.
以环氧树脂为基材,以导电碳黑为填料,制备了具有正温度系数特性(PTC)的热固性导电复合材料.探讨了固化剂的种类,环氧树脂基体的种类等对环氧树脂基导电复合材料PTC特性的影响.当以E-51为基体树脂,以VXC200为导电碳黑,树脂和碳黑用量相同时,不同种类固化剂制备的环氧树脂基导电复合材料的PTC强度不同,其中当固化剂为甲基六氢邻苯二甲酸酐时,所得的导电复合材料的PTC强度最大.当以环氧树脂E-51为基材,以甲基四氢邻苯二甲酸酐为固化剂,以导电碳黑VXC200为导电填料制备的环氧树脂基导电复合材料具有很高的PTC强度,阻值随温度变化在130℃附近发生阶跃性变化,由2.7欧姆上升到几百欧姆,温度恢复到室温时,阻值恢复到初始值附近,具有可恢复性.  相似文献   

11.
采用聚氨酯增韧环氧树脂,并利用有机化的纳米SiO2为改性剂制备纳米改性环氧树脂胶黏剂.利用扫描电子显微镜( SEM)观察无机纳米粒子在聚合物基体中的分散性及复合材料的断面形貌,结果表明无机纳米粒子在复合材料中分散性良好,而且聚氨酯在环氧树脂基体中形成了“孔洞结构”.采用电子拉力机、TGA以及介电谱仪等方法测试了复合材料...  相似文献   

12.
为了提高碳纤维与树脂基体之间的粘结性能,采用循环伏安法,以丙烯酸为聚合单体对碳纤维进行了电聚合改性.利用傅里叶红外光谱仪和扫描电子显微镜研究了改性前后碳纤维表面的结构变化,并利用电脑伺服控制材料试验机对复合材料进行了力学性能测试.结果表明:当丙烯酸浓度为0.3 mol/L、循环次数为10次时,碳纤维的改性效果最佳;改性后的碳纤维在红外光谱的2 680 cm-1附近出现了—OH特征吸收峰;复合材料的层间剪切强度由10.50 MPa增加到了23.44 MPa,提高了123.21%;改性后碳纤维表面出现了圆片状丙烯酸聚合物层,且可与环氧树脂基体紧密结合.  相似文献   

13.

氧化石墨烯和二氧化硅纳米颗粒协同作用下的

复合材料力学性能改善

Anchalee Duongthipthewa, 杨树明*,王一鸣

(西安交通大学 机械制造系统工程国家重点实验室,西安 710049)

创新点说明:

本文提出将氧化石墨烯和纳米二氧化硅颗粒组成的纳米复合材料作为填充物添加到环氧树脂/碳纤维复合材料体系中,用于提升其机械性能和湿润环境下的抗腐蚀性。

研究目的:

通过实验研究了氧化石墨烯和纳米二氧化硅颗粒组成的纳米复合材料作为填充物对环氧树脂/碳纤维复合材料体系的机械性能增强作用,以及在湿润环境下的抗腐蚀性。

研究方法:

本文通过真空辅助树脂传递模塑(VARTM)方法制备了环氧树脂/碳纤维复合材料样品,同时也通过该方法向复合材料体系中添加了不同分量的氧化石墨烯和纳米二氧化硅颗粒组成的纳米复合填料;通过三点弯曲测试、冲击实验、硬度测试和动态力学分析等方法对所制备样品的弯曲强度、冲击强度、硬度等机械性能进行了测量;通过分别在纯水和盐水中浸泡2周,对样品的吸湿性、烘干后的重量保留和性能保留进行了分析测试。

结果:

实验结果表明,对于添加了氧化石墨烯和纳米二氧化硅颗粒组成的纳米复合材料作为填充物的环氧树脂/碳纤维复合材料体系,其机械性能表现出全面的明显提升,包括弯曲强度、冲击强度、硬度等;纳米二氧化硅分量的提高还会使其性能得到进一步提升;对于含有复合纳米填充物的样品,其暴露在湿润环境中时虽然吸湿度较高,但烘干后重量损失反而较小,而且再次对其机械性能进行测试后发现其性能保留程度也较高;同样的,含有高分量纳米二氧化硅的样品性能表现最优。为探究其增强原理,通过扫描电子显微镜对样品断面进行了分析。

结论:

实验结果显示,复合填充物的存在使整个复合材料体系的机械强度得到提升,其根本原因在于复合填充材料的存在使环氧树脂与碳纤维骨架的结合更加紧密,在收到外力作用时应力得以迅速传递避免累积,扫描电子显微镜的结果也支持该结论。

关键词:复合材料,纳米填充,机械性能,热分析,吸湿性

  相似文献   

14.
Because of its merits,acrylic resin was chosen to improve the mechanical,conductive and hydrophobic properties.Carbon fiber powders (CF),carbon nanotubes (MWCNT),and nano-TiO_2 were incorporated into the acrylic resin to prepare the corona-proof conductive composite coatings.The incorporation of CF and MWCNT may improve the conductivity and mechanical strength of the coatings.However,the addition of nano-TiO_2 may increase the hydrophobicity of the coatings.Thus,the effects of different additives on the mechanical properties,conductivity,hydrophobicity and heat resistance of the conductive film were studied.The experimental results show that the incorporation of carbon fiber powders and multi walled carbon nanotubes can significantly improve both the conductivity and mechanical properties of the conductive coatings,and the addition of nano titanium dioxide can improve the hydrophobicity of the conductive film.  相似文献   

15.
The epoxy resin (E-51) was used as polymer matrix,conductive carbon black (CB) as conductive filler,and PZT was used to prepare a composite by curing.The effects of PZT and CB content on the properties of PZT/ CB/ EP piezoelectric composite were studied.When the PZT content reaches 40 wt%,the optimized vibration attenuation properties of PZT/CB/EP materials could be achieved with a loss factor of 0.9 from room temperature to 60 ℃.With the increase of PZT content,the bending strength of PZT/CB/EP piezoelectric composite vibration reduction material firstly increased from 45 MPa to 65 MPa and then decreased to 38 MPa.At room temperature,the dielectric constant increased from 7 to 50,and the dielectric loss increased from 0.1 to 0.5.  相似文献   

16.
中空玻璃微珠填充环氧树脂复合材料   总被引:5,自引:0,他引:5  
讨论了用发电厂固体废料中的中空玻璃微珠填充E-44环氧树脂制备轻质复合材料,实验详尽地考察了微珠填料,KH-500偶联剂,固化剂(三乙基四胺,T-31,三乙醇及液体四氢苯酐)及低聚酰胺等增韧剂等对所得的复合材料为力学性能的影响,并通过扫描电镜(SEM)观察了材料的形态,其结果表明,偶联剂和增韧剂对复合材料的力学性能影响较大,中空玻璃微珠填充环氧树脂赋予基轻质,高强,价廉等特性。  相似文献   

17.
The present work aims to present the results based on the processing of nanocomposites, which consist of matrix materials like epoxy and filler materials such as conjugated nanomaterials/allotropes of carbon, namely, carbon black, graphite, and multiwalled carbon nanotube (MWCNT) used for targeted applications. To improve the physical and chemical properties and to facilitate a better interfacial interface between the polymer and nanotube, functional MWCNT is used during the preparation of the composite. The prime objective of the study is to establish the thermal, mechanical, and electrical properties of nanocomposites using experimental methods. It has been observed from the experimental results that carbon nanotube (CNT) based composite exhibits higher mechanical (tensile and hardness) and thermal properties as compared with the others. The electrical properties are found to be better in a graphite-based composite. Although CNT has superior mechanical and thermal properties, the exorbitant price limits its use. Hence, the allotropes of carbon may be used judiciously considering both the cost and property requirements of the targeted application. The work also studies the dispersion state of nanofibers through scanning electron microscopy (SEM).  相似文献   

18.
研究了5种偶联剂对玻璃纤维的浸润性能和玻璃纤维/环氧基复合基材料介绍性能的影响。结果表明,玻璃纤维经偶联剂处理后,其浸润活化能降低,与环氧基体的相容性及化学反应活性得到改善,从而提高了玻璃纤维/环氧基复合材料的介电性能。其提高的幅度与偶联剂的枯性和化学结构有关。同时还研究了环境温度和水煮时间对玻璃纤维/环氧基复合材料介电性能的影响,并对影响机制进行了分析讨论。  相似文献   

19.
采用浓酸(浓硫酸/浓硝酸)氧化法对纳米碳纤维进行表面处理,在水热和超声分散条件下,制备了纳米碳纤维/环氧树脂复合材料。红外光谱测试结果表明,酸化处理在纳米碳纤维表面引入了羟基和羧基等能参与环氧树脂固化反应的官能团。处理后纳米碳纤维的分散性有了明显的改善和提高。SEM和复合材料拉伸性能测试结果也显示了酸化处理能有效改善纤维与树脂的界面结合状况,提高复合材料的拉伸性能。当酸化处理纳米碳纤维的质量分数为0.1%时,复合材料的拉伸强度达到最大值,是纯树脂的1.8倍,是同含量未处理纳米碳纤维材料的1.6倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号