首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Horizontal axis wind turbines (HAWTs) experience three‐dimensional rotational and unsteady aerodynamic phenomena at the rotor blades sections. These highly unsteady three‐dimensional effects have a dramatic impact on the aerodynamic load distributions on the blades, in particular, when they occur at high angles of attack due to stall delay and dynamic stall. Unfortunately, there is no complete understanding of the flow physics yet at these unsteady 3D flow conditions, and hence, the existing published theoretical models are often incapable of modelling the impact on the turbine response realistically. The purpose of this paper is to provide an insight on the combined influence of the stall delay and dynamic stall on the blade load history of wind turbines in controlled and uncontrolled conditions. New dynamic stall vortex and nonlinear tangential force coefficient modules, which integrally take into account the three dimensional rotational effect, are also proposed in this paper. This module along with the unsteady influence of turbulent wind speed and tower shadow is implemented in a blade element momentum (BEM) model to estimate the aerodynamic loads on a rotating blade more accurately. This work presents an important step to help modelling the combined influence of the stall delay and dynamic stall on the load history of the rotating wind turbine blades which is vital to have lighter turbine blades and improved wind turbine design systems.  相似文献   

2.
以NREL-5 MW风力机为研究对象,基于叶素动量理论,考虑动态失速、风剪切及塔影效应等气动修正模型,开发Matlab非定常气动载荷计算程序,研究浮式水平轴风力机气动特性。结果表明:为保证风力机气动载荷模拟的正确性,气动修正模型必不可少;基础运动对风力机气动性能有显著影响,基础运动使风力机输出功率增大,但同时存在较大的振荡幅度,导致功率输出不稳定;叶片变桨失效导致功率输出更加不稳定。  相似文献   

3.
Blade element momentum (BEM) theory is the standard computational technique for the prediction of power curves of wind turbines; it is based on the two‐dimensional aerodynamic properties of aerofoil blade elements and some corrections accounting for three‐dimensional wing aerodynamics. Although most BEM models yield acceptable results for low‐wind and pitch‐controlled regimes where the local angles of attack are small, no generally accepted model exists up to date that consistently predicts the power curve in the stall regime for a variety of blade properties and operating conditions. In this article we present a modified BEM model which satisfactorily reproduces the power curves of four experimental wind turbines reported in the literature, using no free fit parameters. Since these four experimental cases comprehend a great variety of conditions (wind tunnel vs field experiments, different air densities) and blade parameters (no twist and no taper, no taper but twist, both twist and taper, different aerofoil families), it is believed that our model represents a useful working tool for the aerodynamic design of stall‐regulated wind turbines. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
百千瓦级叶片一般采用定桨方式运行,依靠叶片失速进行功率控制,机组运行过程中无法维持较高的效率。基于100 kW变速变桨机组的运行特征,提出了一种100 kW级中型叶片的设计方法。气动设计采用了BEM方法,利用Harp_opt中的优化算法获得较高的气动性能;结构及载荷设计参考IEC标准进行,采用Focus进行铺层设计及结构特性分析。所设计叶片的长度为10.029 m左右,极限及疲劳载荷特性满足GL IIA类风场的运行要求。  相似文献   

5.
Aerodynamic and structural dynamic performance analysis of modern wind turbines are routinely estimated in the wind energy field using computational tools known as aeroelastic codes. Most aeroelastic codes use the blade element momentum (BEM) technique to model the rotor aerodynamics and a modal, multi‐body or the finite‐element approach to model the turbine structural dynamics. The present work describes the development of a novel aeroelastic code that combines a three‐dimensional viscous–inviscid interactive method, method for interactive rotor aerodynamic simulations (MIRAS), with the structural dynamics model used in the aeroelastic code FLEX5. The new code, called MIRAS‐FLEX, is an improvement on standard aeroelastic codes because it uses a more advanced aerodynamic model than BEM. With the new aeroelastic code, more physical aerodynamic predictions than BEM can be obtained as BEM uses empirical relations, such as tip loss corrections, to determine the flow around a rotor. Although more costly than BEM, a small cluster is sufficient to run MIRAS‐FLEX in a fast and easy way. MIRAS‐FLEX is compared against the widely used FLEX5 and FAST, as well as the participant codes from the Offshore Code Comparison Collaboration Project. Simulation tests consist of steady wind inflow conditions with different combinations of yaw error, wind shear, tower shadow and turbine‐elastic modeling. Turbulent inflow created by using a Mann box is also considered. MIRAS‐FLEX results, such as blade tip deflections and root‐bending moments, are generally in good agreement with the other codes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
To determine the control structures and possible power quality issues, the dynamic torque generated by the blades of a wind turbine must be represented. This paper presents an analytical formulation of the generated aerodynamic torque of a three-bladed wind turbine including the effects of wind shear and tower shadow. The comprehensive model includes turbine-specific parameters such as radius, height, and tower dimensions, as well as the site-specific parameter, the wind shear exponent. The model proves the existence of a 3p pulsation due to wind shear and explains why it cannot be easily identified in field measurements. The proportionality constant between the torque and the wind speed is determined allowing direct aerodynamic torque calculation from an equivalent wind speed. It is shown that the tower shadow effect is more dominant than the wind shear effect in determining the dynamic torque, although there is a small dc reduction in the torque oscillation due to wind shear. The model is suitable for real-time wind turbine simulation or other time domain simulation of wind turbines in power systems.  相似文献   

7.
P.F. Skjoldan  M.H. Hansen 《风能》2013,16(3):401-415
Wind shear is an important contributor to fatigue loads on wind turbines. Because it causes an azimuthal variation in angle of attack, it can also affect aerodynamic damping. In this paper, a linearized model of a wind turbine, based on the non‐linear aeroelastic code BHawC, is used to investigate the effect of wind shear on the modal damping of the turbine. In isotropic conditions with a uniform wind field, the modal properties can be extracted from the system matrix transformed into the inertial frame using the Coleman transformation. In shear conditions, an implicit Floquet analysis, which reduces the computational burden associated with classical Floquet analysis, is used for modal analysis. The methods are applied to a 2.3 MW three‐bladed pitch‐regulated wind turbine showing a difference in damping between isotropic and extreme shear conditions at rated wind speed when the turbine is operating closest to stall. The first longitudinal tower mode decreases slightly in damping, whereas the first flapwise backward whirling and symmetric modes increase in damping. This change in damping is attributed to an interaction between the periodic blade mode shapes and the azimuth‐dependent local aerodynamic damping in the shear condition caused by a beginning separation of the flow. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Carlos Noyes  Chao Qin  Eric Loth 《风能》2020,23(3):458-470
The downwind rotor configuration provides a structural advantage compared with an upwind design. However, tower shadow has long been a concern for downwind systems. The tower shadow negatively affects the blade by introducing a load impulse during the wake passage. An aerodynamic fairing could shroud the tower reducing the wake. However, there is no clear consensus on the importance of a tower shadow for utility‐scale wind turbines. Simulations were conducted in FAST to determine the general parameters that influence the importance of the tower shadow effect for the differently sized wind turbines. The lock number of the blade was a significant driving quantity. Lower lock numbers (typical of small‐scale wind turbines) lead to greater relative fatigue damage from tower shadow effects. It was determined that a fairing is very helpful for small‐scale wind turbines operating in a low‐turbulence environment (such as a subscale wind tunnel test). However, the tower shadow increased the damage equivalent loading on an extreme scale blade by less than 5% in a turbulent environment. These results indicate that the cost of a tower fairing is likely unnecessary for utility‐scale wind turbines in operation.  相似文献   

9.
J. Park  S. Basu  L. Manuel 《风能》2014,17(3):359-384
Stochastic simulation of turbulent inflow fields commonly used in wind turbine load computations is unable to account for contrasting states of atmospheric stability. Flow fields in the stable boundary layer, for instance, have characteristics such as enhanced wind speed and directional shear; these effects can influence loads on utility‐scale wind turbines. To investigate these influences, we use large‐eddy simulation (LES) to generate an extensive database of high‐resolution ( ~ 10 m), four‐dimensional turbulent flow fields. Key atmospheric conditions (e.g., geostrophic wind) and surface conditions (e.g., aerodynamic roughness length) are systematically varied to generate a diverse range of physically realizable atmospheric stabilities. We show that turbine‐scale variables (e.g., hub height wind speed, standard deviation of the longitudinal wind speed, wind speed shear, wind directional shear and Richardson number) are strongly interrelated. Thus, we strongly advocate that these variables should not be prescribed as independent degrees of freedom in any synthetic turbulent inflow generator but rather that any turbulence generation procedure should be able to bring about realistic sets of such physically realizable sets of turbine‐scale flow variables. We demonstrate the utility of our LES‐generated database in estimation of loads on a 5‐MW wind turbine model. More importantly, we identify specific turbine‐scale flow variables that are responsible for large turbine loads—e.g., wind speed shear is found to have a greater influence on out‐of‐plane blade bending moments for the turbine studied compared with its influence on other loads such as the tower‐top yaw moment and the fore‐aft tower base moment. Overall, our study suggests that LES may be effectively used to model inflow fields, to study characteristics of flow fields under various atmospheric stability conditions and to assess turbine loads for conditions that are not typically examined in design standards. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The prospect of installing blades that twist as they bend and/or extend on horizontal axis wind turbines provides opportunities for enhanced energy capture and/or load mitigation. Although this coupling could be achieved in either an active or a passive manner, the passive approach is much more attractive owing to its simplicity and economy. As an example, a blade design might employ coupling between bending and twisting, so that as the blade bends owing to the action of the aerodynamic loads, it also twists, modifying the aerodynamic performance in some way. For reducing loads the blades are designed to twist towards feather as they bend. For variable‐speed pitch‐controlled rotors, dynamic computer simulations with turbulent inflow show that twist coupling substantially decreases fatigue damage over all wind speeds, without reducing average power. Maximum loads also decrease modestly. For constant‐speed stall‐controlled and variable‐speed stall‐controlled rotors, significant decreases in fatigue damage are observed at the lower wind speeds and smaller decreases at the higher wind speeds. Maximum loads also decrease slightly. As a general observation, whenever a rotor is operating in the linear aerodynamic range (lower wind speeds for stall control and all wind speeds for pitch control), substantial reductions in fatigue damage are realized. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
采用CFD方法,以NH1500三叶片大型水平轴风力机为研究对象,研究额定风速剪切来流下的塔影效应对水平轴风力机叶片和风轮非定常气动载荷的影响。结果表明:剪切来流下,叶片和风轮的气动载荷均呈余弦变化规律,塔影效应的主要影响叶片方位角范围为160°~210°,且该范围不随风剪切指数的变化而变化。相同风剪切指数下,塔影效应对叶片和风轮气动载荷的均方根影响较小,对其波动影响较大。当风剪切指数从0.12增至0.30时,塔影效应下,叶片气动载荷的均方根减小,推力和转矩的波动幅度增大,偏航力矩和倾覆力矩的波动幅度减小;风轮推力和转矩的均方根减小,波动幅度变化较小,而倾覆力矩和偏航力矩的均方根增大,且波动幅度也增大。  相似文献   

12.
This paper presents the development of a computational aeroelastic tool for the analysis of performance, response and stability of horizontal‐axis wind turbines. A nonlinear beam model for blades structural dynamics is coupled with a state‐space model for unsteady sectional aerodynamic loads, including dynamic stall effects. Several computational fluid dynamics structural dynamics coupling approaches are investigated to take into account rotor wake inflow influence on downwash, all based on a Boundary Element Method for the solution of incompressible, potential, attached flows. Sectional steady aerodynamic coefficients are extended to high angles of attack in order to characterize wind turbine operations in deep stall regimes. The Galerkin method is applied to the resulting aeroelastic differential system. In this context, a novel approach for the spatial integration of additional aerodynamic states, related to wake vorticity and dynamic stall, is introduced and assessed. Steady‐periodic blade responses are evaluated by a harmonic balance approach, whilst a standard eigenproblem is solved for aeroelastic stability analyses. Drawbacks and potentialities of the proposed model are investigated through numerical and experimental comparisons, with particular attention to rotor blades unsteady aerodynamic modelling issues. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
以NREL 5 MW近海风力机为研究对象,基于Kaimal平稳随机风速谱模型建立风力机全域湍流风,同时采用Matlock模型计算动态冰力,模拟风力机所受冰激振动,研究在风-冰联合环境载荷作用下近海风力机动力学响应。结果表明:冰激振动极大地加剧塔顶各向振动;频域上,冰激振动影响主要集中于塔架1阶固有频率和叶片1阶摆振频率,且相应峰值与冰厚呈正相关关系;受冰激振动作用,塔架各向剪切力明显增加,且塔顶和塔基附近增幅大于塔身中部。  相似文献   

14.
针对风力机叶片,建立其结构动力学方程,推导分析了叶片旋转所产生的振动速度及其对来流的影响。基于BEM(Blade Element Momentum)理论,在风力机空气动力学基础上,建立了风力机的气动耦合分析模型。应用该模型,对某2MW风力机进行了计算分析,得到了叶片在额定工作风速下的振动变形、速度、加速度以及叶片沿展向的变形和载荷分布。充分考虑叶片的结构振动特性与来流风速的耦合效应,使得风力机空气动力学特性模型更加准确,对于风力机的设计和分析具有重要意义。  相似文献   

15.
A framework based on isogeometric analysis is presented for parametrizing a wind turbine rotor blade and evaluating its response. The framework consists of a multi‐fidelity approach for wind turbine rotor analysis. The aeroelastic loads are determined using a low‐fidelity model. The model is based on isogeometric approach to model both the structural and aerodynamic properties. The structural deformations are solved using an isogeometric formulation of geometrically exact 3D beam theory. The aerodynamic loads are calculated using a standard Blade Element Momentum(BEM) theory. Moreover, the aerodynamic loads calculated using BEM theory are modified to account for the change in the blade shape due to blade deformation. The aeroelastic loads are applied in finite element solver Nastran, and both the stress response and buckling response are extracted. Furthermore, the capabilities of Nastran are extended such that design dependent loads can be applied, resulting in correct aeroelastic sensitivities of Nastran responses, making this framework suitable for optimization. The framework is verified against results from the commercial codes FAST and GH Bladed, using the NREL 61.5m rotor blade as a baseline for comparison, showing good agreement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Dynamic stall (DS) on a wind turbine is encountered when the sectional angles of attack of the blade rapidly exceeds the steady-state stall angle of attack due to in-flow turbulence, gusts and yaw-misalignment. The process is considered as a primary source of unsteady loads on wind turbine blades and negatively influences the performance and fatigue life of a turbine. In the present article, the control requirements for DS have been outlined for wind turbines based on an in-depth analysis of the process. Three passive control methodologies have been investigated for dynamic stall control: (1) streamwise vortices generated using vortex generators (VGs), (2) spanwise vortices generated using a novel concept of an elevated wire (EW), and (3) a cavity to act as a reservoir for the reverse flow accumulation. The methods were observed to delay the onset of DS by several degrees as well as reduce the increased lift and drag forces that are associated with the DSV. However, only the VG and the EW were observed to improve the post-stall characteristics of the airfoil.  相似文献   

17.
18.
To predict the unsteady aerodynamic loads of horizontal-axis wind turbines (HAWTs) during operations under yawing and pitching conditions, an unsteady numerical simulation method is proposed. This method includes a nonlinear lifting line method to compute the aerodynamic loads on the blades and a time-accurate free-vortex method to simulate the wake. To improve the convergence property in the nonlinear lifting line method, an iterative algorithm based on the Newton–Raphson method is developed. To increase the computational efficiency and the accuracy of the calculation, a new wake vortex model consisting of the vortex core model, the vortex sheet model and the tip vortex model is used. Wind turbines with different diameters, such as NREL Phase VI, the TU Delft model turbine and the Tjæreborg wind turbine, are used to validate the method for rotors operating at given yaw and/or pitch angles and during yawing and/or pitching processes at different wind speeds. The results, including the blade loads, the rotor torque and the locations of the tip vortex cores in the wake, agree well with the measured data and the computed data. It is shown that the proposed method can be used for predictions of unsteady aerodynamic loads and rotor wakes in the operational processes of blade pitching and/or rotor yawing.  相似文献   

19.
Moutaz Elgammi  Tonio Sant 《风能》2017,20(9):1645-1663
Stall delay is a complicated phenomenon that has gained for many years the attention of industry and academics in the fields of helicopter and wind turbine aerodynamics. Since most of the potential flow theories still rely on the use of 2D aerofoil data for simulating loads on a rotating blade, less degree of accuracy is expected because of 3D rotational effects. In this work, a new model for correcting the 2D steady aerodynamic data for 3D effects is presented. The model can reduce the uncertainty in the blade design process and, subsequently, make wind turbines more cost‐effective. This model combines the stall delay model of Corrigan and Schillings, a modified version of an inviscid stall delay model, a new modification factor to account for the effect of the angle of attack changes and a new tip loss factor. Furthermore, the model applies the use of the separation factor of Du and Selig to evaluate the area on the rotor disc where stall delay is most prominent. The new stall delay model was embedded in a free‐wake vortex model to estimate the aerodynamic loads on the National Renewable Energy Laboratory Phase VI rotor blades consisting of the S809 aerofoil sections. The results in this study confirm the validity of the 3D corrections by the proposed new model under both axial and yawed flow conditions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
从对附着流和分离流的建模两方面阐述了Beddoes-Leishman动态失速模型.基于Beddoes-Leishman模型开发了动态失速数值计算程序,并将其集成到了现有的风力机气动载荷分析软件中.利用所开发的程序,计算了NACA 63-418翼型的动态失速特性,分析了平均攻角、衰减频率和马赫数的变化对动态失速特性的影响.仿真了一台1.5MW变速恒频风电机组的发电工况,结果表明,动态失速对风力机的动态气动载荷有极大影响,在进行动态载荷仿真时必须予以充分考虑.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号